danhtran2mind commited on
Commit
3254cd5
·
verified ·
1 Parent(s): b37e2cc

Add files using upload-large-folder tool

Browse files
.gitattributes CHANGED
@@ -33,3 +33,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
37
+ checkpoint-6000/tokenizer.json filter=lfs diff=lfs merge=lfs -text
38
+ checkpoint-6181/tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -1,3 +1,115 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model:
3
+ - google/gemma-3-1b-it
4
+ library_name: peft
5
+ model_name: Gemma-3-1B-it-Medical-LoRA
6
+ tags:
7
+ - generated_from_trainer
8
+ - unsloth
9
+ - sft
10
+ - trl
11
+ licence: license
12
+ datasets:
13
+ - tmnam20/ViMedAQA
14
+ language:
15
+ - vi
16
+ ---
17
+
18
+ # Model Card for Gemma-3-1B-it-Medical-LoRA
19
+
20
+ This model is a fine-tuned version of [unsloth/gemma-3-1b-it-unsloth-bnb-4bit](https://huggingface.co/unsloth/gemma-3-1b-it-unsloth-bnb-4bit).
21
+ It has been trained using [TRL](https://github.com/huggingface/trl).
22
+
23
+ ## Quick start
24
+
25
+ ```python
26
+ from transformers import pipeline
27
+
28
+ question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
29
+ generator = pipeline("text-generation", model="None", device="cuda")
30
+ output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
31
+ print(output["generated_text"])
32
+ ```
33
+
34
+ ```python
35
+ import torch
36
+ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
37
+ from peft import PeftModel
38
+
39
+ # Define model and LoRA adapter paths
40
+ base_model_name = "unsloth/gemma-3-1b-it"
41
+ lora_adapter_name = "heboya8/Gemma-3-1B-it-Medical-LoRA"
42
+
43
+ # Load tokenizer
44
+ tokenizer = AutoTokenizer.from_pretrained(base_model_name)
45
+
46
+ # Load base model with optimized settings
47
+ model = AutoModelForCausalLM.from_pretrained(
48
+ base_model_name,
49
+ torch_dtype=torch.float16, # Use FP16 for efficiency
50
+ device_map="cpu", # Explicitly map to CUDA device
51
+ trust_remote_code=True
52
+ )
53
+
54
+ # Apply LoRA adapter
55
+ model = PeftModel.from_pretrained(model, lora_adapter_name)
56
+
57
+ # Set model to evaluation mode
58
+ model.eval()
59
+
60
+ # Create text generation pipeline
61
+ generator = pipeline(
62
+ "text-generation",
63
+ model=model,
64
+ tokenizer=tokenizer,
65
+ torch_dtype=torch.float16,
66
+ device_map="cuda",
67
+ max_new_tokens=128, # Limit response length as per original script
68
+ )
69
+
70
+ # Define the question
71
+ question = ("Khi nghi ngờ bị loét dạ dày tá tràng nên đến khoa nào "
72
+ "tại bệnh viện để thăm khám?")
73
+
74
+ # Format input for the pipeline
75
+ input_prompt = [{"role": "user", "content": question}]
76
+
77
+ # Generate response
78
+ output = generator(input_prompt, return_full_text=False)[0]
79
+
80
+ # Print the generated text
81
+ print(output["generated_text"])
82
+ ```
83
+
84
+ ## Training procedure
85
+
86
+
87
+
88
+
89
+ This model was trained with SFT.
90
+
91
+ ### Framework versions
92
+
93
+ - PEFT 0.14.0
94
+ - TRL: 0.19.0
95
+ - Transformers: 4.52.4
96
+ - Pytorch: 2.6.0+cu124
97
+ - Datasets: 3.6.0
98
+ - Tokenizers: 0.21.1
99
+
100
+ ## Citations
101
+
102
+
103
+
104
+ Cite TRL as:
105
+
106
+ ```bibtex
107
+ @misc{vonwerra2022trl,
108
+ title = {{TRL: Transformer Reinforcement Learning}},
109
+ author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
110
+ year = 2020,
111
+ journal = {GitHub repository},
112
+ publisher = {GitHub},
113
+ howpublished = {\url{https://github.com/huggingface/trl}}
114
+ }
115
+ ```
adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "unsloth/gemma-3-1b-it-unsloth-bnb-4bit",
5
+ "bias": "none",
6
+ "eva_config": null,
7
+ "exclude_modules": null,
8
+ "fan_in_fan_out": false,
9
+ "inference_mode": true,
10
+ "init_lora_weights": true,
11
+ "layer_replication": null,
12
+ "layers_pattern": null,
13
+ "layers_to_transform": null,
14
+ "loftq_config": {},
15
+ "lora_alpha": 8,
16
+ "lora_bias": false,
17
+ "lora_dropout": 0,
18
+ "megatron_config": null,
19
+ "megatron_core": "megatron.core",
20
+ "modules_to_save": null,
21
+ "peft_type": "LORA",
22
+ "r": 16,
23
+ "rank_pattern": {},
24
+ "revision": null,
25
+ "target_modules": "(?:.*?(?:language|text).*?(?:self_attn|attention|attn|mlp|feed_forward|ffn|dense).*?(?:q_proj|k_proj|v_proj|o_proj|gate_proj|up_proj|down_proj).*?)|(?:\\bmodel\\.layers\\.[\\d]{1,}\\.(?:self_attn|attention|attn|mlp|feed_forward|ffn|dense)\\.(?:(?:q_proj|k_proj|v_proj|o_proj|gate_proj|up_proj|down_proj)))",
26
+ "task_type": "CAUSAL_LM",
27
+ "use_dora": false,
28
+ "use_rslora": false
29
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d4c3a35b62a6eb804c7c1bfb5aaafe834771f22ddecd95d3e047e3258c04327e
3
+ size 52231312
added_tokens.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "<image_soft_token>": 262144
3
+ }
chat_template.jinja ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {{ bos_token }}
2
+ {%- if messages[0]['role'] == 'system' -%}
3
+ {%- if messages[0]['content'] is string -%}
4
+ {%- set first_user_prefix = messages[0]['content'] + '
5
+
6
+ ' -%}
7
+ {%- else -%}
8
+ {%- set first_user_prefix = messages[0]['content'][0]['text'] + '
9
+
10
+ ' -%}
11
+ {%- endif -%}
12
+ {%- set loop_messages = messages[1:] -%}
13
+ {%- else -%}
14
+ {%- set first_user_prefix = "" -%}
15
+ {%- set loop_messages = messages -%}
16
+ {%- endif -%}
17
+ {%- for message in loop_messages -%}
18
+ {%- if (message['role'] == 'user') != (loop.index0 % 2 == 0) -%}
19
+ {{ raise_exception("Conversation roles must alternate user/assistant/user/assistant/...") }}
20
+ {%- endif -%}
21
+ {%- if (message['role'] == 'assistant') -%}
22
+ {%- set role = "model" -%}
23
+ {%- else -%}
24
+ {%- set role = message['role'] -%}
25
+ {%- endif -%}
26
+ {{ '<start_of_turn>' + role + '
27
+ ' + (first_user_prefix if loop.first else "") }}
28
+ {%- if message['content'] is string -%}
29
+ {{ message['content'] | trim }}
30
+ {%- elif message['content'] is iterable -%}
31
+ {%- for item in message['content'] -%}
32
+ {%- if item['type'] == 'image' -%}
33
+ {{ '<start_of_image>' }}
34
+ {%- elif item['type'] == 'text' -%}
35
+ {{ item['text'] | trim }}
36
+ {%- endif -%}
37
+ {%- endfor -%}
38
+ {%- else -%}
39
+ {{ raise_exception("Invalid content type") }}
40
+ {%- endif -%}
41
+ {{ '<end_of_turn>
42
+ ' }}
43
+ {%- endfor -%}
44
+ {%- if add_generation_prompt -%}
45
+ {{ '<start_of_turn>model
46
+ ' }}
47
+ {%- endif -%}
checkpoint-6000/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: unsloth/gemma-3-1b-it-unsloth-bnb-4bit
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.14.0
checkpoint-6000/adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "unsloth/gemma-3-1b-it-unsloth-bnb-4bit",
5
+ "bias": "none",
6
+ "eva_config": null,
7
+ "exclude_modules": null,
8
+ "fan_in_fan_out": false,
9
+ "inference_mode": true,
10
+ "init_lora_weights": true,
11
+ "layer_replication": null,
12
+ "layers_pattern": null,
13
+ "layers_to_transform": null,
14
+ "loftq_config": {},
15
+ "lora_alpha": 8,
16
+ "lora_bias": false,
17
+ "lora_dropout": 0,
18
+ "megatron_config": null,
19
+ "megatron_core": "megatron.core",
20
+ "modules_to_save": null,
21
+ "peft_type": "LORA",
22
+ "r": 16,
23
+ "rank_pattern": {},
24
+ "revision": null,
25
+ "target_modules": "(?:.*?(?:language|text).*?(?:self_attn|attention|attn|mlp|feed_forward|ffn|dense).*?(?:q_proj|k_proj|v_proj|o_proj|gate_proj|up_proj|down_proj).*?)|(?:\\bmodel\\.layers\\.[\\d]{1,}\\.(?:self_attn|attention|attn|mlp|feed_forward|ffn|dense)\\.(?:(?:q_proj|k_proj|v_proj|o_proj|gate_proj|up_proj|down_proj)))",
26
+ "task_type": "CAUSAL_LM",
27
+ "use_dora": false,
28
+ "use_rslora": false
29
+ }
checkpoint-6000/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e9b1053833338eb57c64634fe9ad64f75cc8785bef8fb40de94b728d05a30ffe
3
+ size 52231312
checkpoint-6000/added_tokens.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "<image_soft_token>": 262144
3
+ }
checkpoint-6000/chat_template.jinja ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {{ bos_token }}
2
+ {%- if messages[0]['role'] == 'system' -%}
3
+ {%- if messages[0]['content'] is string -%}
4
+ {%- set first_user_prefix = messages[0]['content'] + '
5
+
6
+ ' -%}
7
+ {%- else -%}
8
+ {%- set first_user_prefix = messages[0]['content'][0]['text'] + '
9
+
10
+ ' -%}
11
+ {%- endif -%}
12
+ {%- set loop_messages = messages[1:] -%}
13
+ {%- else -%}
14
+ {%- set first_user_prefix = "" -%}
15
+ {%- set loop_messages = messages -%}
16
+ {%- endif -%}
17
+ {%- for message in loop_messages -%}
18
+ {%- if (message['role'] == 'user') != (loop.index0 % 2 == 0) -%}
19
+ {{ raise_exception("Conversation roles must alternate user/assistant/user/assistant/...") }}
20
+ {%- endif -%}
21
+ {%- if (message['role'] == 'assistant') -%}
22
+ {%- set role = "model" -%}
23
+ {%- else -%}
24
+ {%- set role = message['role'] -%}
25
+ {%- endif -%}
26
+ {{ '<start_of_turn>' + role + '
27
+ ' + (first_user_prefix if loop.first else "") }}
28
+ {%- if message['content'] is string -%}
29
+ {{ message['content'] | trim }}
30
+ {%- elif message['content'] is iterable -%}
31
+ {%- for item in message['content'] -%}
32
+ {%- if item['type'] == 'image' -%}
33
+ {{ '<start_of_image>' }}
34
+ {%- elif item['type'] == 'text' -%}
35
+ {{ item['text'] | trim }}
36
+ {%- endif -%}
37
+ {%- endfor -%}
38
+ {%- else -%}
39
+ {{ raise_exception("Invalid content type") }}
40
+ {%- endif -%}
41
+ {{ '<end_of_turn>
42
+ ' }}
43
+ {%- endfor -%}
44
+ {%- if add_generation_prompt -%}
45
+ {{ '<start_of_turn>model
46
+ ' }}
47
+ {%- endif -%}
checkpoint-6000/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9a6fb6de75cc68b2f2f25923e5d3596560d5c0bb4014aaf4af4a95699579d03b
3
+ size 27860634
checkpoint-6000/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e2b0d4622ef35d3b8f3ea1592bf278ce61bee81cf5bac712353ad99788b7c094
3
+ size 14244
checkpoint-6000/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:abb7c2ebce9830404798c55c6276c8d7b7170eeb57676ad2aee60c7d64a8a777
3
+ size 1064
checkpoint-6000/special_tokens_map.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "boi_token": "<start_of_image>",
3
+ "bos_token": {
4
+ "content": "<bos>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false
9
+ },
10
+ "eoi_token": "<end_of_image>",
11
+ "eos_token": {
12
+ "content": "<end_of_turn>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false
17
+ },
18
+ "image_token": "<image_soft_token>",
19
+ "pad_token": {
20
+ "content": "<pad>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false
25
+ },
26
+ "unk_token": {
27
+ "content": "<unk>",
28
+ "lstrip": false,
29
+ "normalized": false,
30
+ "rstrip": false,
31
+ "single_word": false
32
+ }
33
+ }
checkpoint-6000/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4667f2089529e8e7657cfb6d1c19910ae71ff5f28aa7ab2ff2763330affad795
3
+ size 33384568
checkpoint-6000/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1299c11d7cf632ef3b4e11937501358ada021bbdf7c47638d13c0ee982f2e79c
3
+ size 4689074
checkpoint-6000/tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-6000/trainer_state.json ADDED
@@ -0,0 +1,1114 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": 800,
3
+ "best_metric": 0.57286536693573,
4
+ "best_model_checkpoint": "Gemma-3-1B-it-Medical-LoRA/checkpoint-800",
5
+ "epoch": 6.795242141036534,
6
+ "eval_steps": 200,
7
+ "global_step": 6000,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.05664117813650524,
14
+ "grad_norm": 0.7655816078186035,
15
+ "learning_rate": 0.0001955451348182884,
16
+ "loss": 0.9427,
17
+ "step": 50
18
+ },
19
+ {
20
+ "epoch": 0.11328235627301048,
21
+ "grad_norm": 0.7325181365013123,
22
+ "learning_rate": 0.00018382180539273154,
23
+ "loss": 0.6075,
24
+ "step": 100
25
+ },
26
+ {
27
+ "epoch": 0.16992353440951571,
28
+ "grad_norm": 0.6365712881088257,
29
+ "learning_rate": 0.00017209847596717467,
30
+ "loss": 0.675,
31
+ "step": 150
32
+ },
33
+ {
34
+ "epoch": 0.22656471254602095,
35
+ "grad_norm": 0.9989428520202637,
36
+ "learning_rate": 0.00016037514654161782,
37
+ "loss": 0.6585,
38
+ "step": 200
39
+ },
40
+ {
41
+ "epoch": 0.22656471254602095,
42
+ "eval_loss": 0.6068728566169739,
43
+ "eval_runtime": 154.0009,
44
+ "eval_samples_per_second": 10.188,
45
+ "eval_steps_per_second": 2.552,
46
+ "step": 200
47
+ },
48
+ {
49
+ "epoch": 0.2832058906825262,
50
+ "grad_norm": 0.6311811208724976,
51
+ "learning_rate": 0.00014865181711606098,
52
+ "loss": 0.6311,
53
+ "step": 250
54
+ },
55
+ {
56
+ "epoch": 0.33984706881903143,
57
+ "grad_norm": 0.831785261631012,
58
+ "learning_rate": 0.0001369284876905041,
59
+ "loss": 0.5715,
60
+ "step": 300
61
+ },
62
+ {
63
+ "epoch": 0.3964882469555367,
64
+ "grad_norm": 0.7572771310806274,
65
+ "learning_rate": 0.00012520515826494724,
66
+ "loss": 0.5482,
67
+ "step": 350
68
+ },
69
+ {
70
+ "epoch": 0.4531294250920419,
71
+ "grad_norm": 0.715999960899353,
72
+ "learning_rate": 0.0001134818288393904,
73
+ "loss": 0.5674,
74
+ "step": 400
75
+ },
76
+ {
77
+ "epoch": 0.4531294250920419,
78
+ "eval_loss": 0.5926390290260315,
79
+ "eval_runtime": 144.007,
80
+ "eval_samples_per_second": 10.895,
81
+ "eval_steps_per_second": 2.729,
82
+ "step": 400
83
+ },
84
+ {
85
+ "epoch": 0.5097706032285472,
86
+ "grad_norm": 0.8048545122146606,
87
+ "learning_rate": 0.00010175849941383353,
88
+ "loss": 0.5664,
89
+ "step": 450
90
+ },
91
+ {
92
+ "epoch": 0.5664117813650524,
93
+ "grad_norm": 0.994825541973114,
94
+ "learning_rate": 9.003516998827668e-05,
95
+ "loss": 0.6381,
96
+ "step": 500
97
+ },
98
+ {
99
+ "epoch": 0.6230529595015576,
100
+ "grad_norm": 0.8860945105552673,
101
+ "learning_rate": 7.831184056271981e-05,
102
+ "loss": 0.5774,
103
+ "step": 550
104
+ },
105
+ {
106
+ "epoch": 0.6796941376380629,
107
+ "grad_norm": 0.7308331727981567,
108
+ "learning_rate": 6.658851113716296e-05,
109
+ "loss": 0.5827,
110
+ "step": 600
111
+ },
112
+ {
113
+ "epoch": 0.6796941376380629,
114
+ "eval_loss": 0.580059826374054,
115
+ "eval_runtime": 144.3097,
116
+ "eval_samples_per_second": 10.872,
117
+ "eval_steps_per_second": 2.723,
118
+ "step": 600
119
+ },
120
+ {
121
+ "epoch": 0.7363353157745681,
122
+ "grad_norm": 0.8322684168815613,
123
+ "learning_rate": 5.486518171160609e-05,
124
+ "loss": 0.599,
125
+ "step": 650
126
+ },
127
+ {
128
+ "epoch": 0.7929764939110734,
129
+ "grad_norm": 1.0585319995880127,
130
+ "learning_rate": 4.3141852286049237e-05,
131
+ "loss": 0.631,
132
+ "step": 700
133
+ },
134
+ {
135
+ "epoch": 0.8496176720475785,
136
+ "grad_norm": 1.00983726978302,
137
+ "learning_rate": 3.1418522860492386e-05,
138
+ "loss": 0.5947,
139
+ "step": 750
140
+ },
141
+ {
142
+ "epoch": 0.9062588501840838,
143
+ "grad_norm": 0.6543359160423279,
144
+ "learning_rate": 1.9695193434935523e-05,
145
+ "loss": 0.5665,
146
+ "step": 800
147
+ },
148
+ {
149
+ "epoch": 0.9062588501840838,
150
+ "eval_loss": 0.57286536693573,
151
+ "eval_runtime": 144.191,
152
+ "eval_samples_per_second": 10.881,
153
+ "eval_steps_per_second": 2.726,
154
+ "step": 800
155
+ },
156
+ {
157
+ "epoch": 0.9629000283205891,
158
+ "grad_norm": 0.960976779460907,
159
+ "learning_rate": 7.971864009378664e-06,
160
+ "loss": 0.5712,
161
+ "step": 850
162
+ },
163
+ {
164
+ "epoch": 1.0192580005664118,
165
+ "grad_norm": 0.8420133590698242,
166
+ "learning_rate": 9.988479262672812e-05,
167
+ "loss": 0.5028,
168
+ "step": 900
169
+ },
170
+ {
171
+ "epoch": 1.075899178702917,
172
+ "grad_norm": 0.8027368187904358,
173
+ "learning_rate": 9.412442396313365e-05,
174
+ "loss": 0.5148,
175
+ "step": 950
176
+ },
177
+ {
178
+ "epoch": 1.1325403568394223,
179
+ "grad_norm": 0.7591931223869324,
180
+ "learning_rate": 8.836405529953917e-05,
181
+ "loss": 0.4944,
182
+ "step": 1000
183
+ },
184
+ {
185
+ "epoch": 1.1325403568394223,
186
+ "eval_loss": 0.5851833820343018,
187
+ "eval_runtime": 144.0876,
188
+ "eval_samples_per_second": 10.889,
189
+ "eval_steps_per_second": 2.728,
190
+ "step": 1000
191
+ },
192
+ {
193
+ "epoch": 1.1891815349759276,
194
+ "grad_norm": 0.8245683312416077,
195
+ "learning_rate": 8.26036866359447e-05,
196
+ "loss": 0.5582,
197
+ "step": 1050
198
+ },
199
+ {
200
+ "epoch": 1.2458227131124326,
201
+ "grad_norm": 0.8791372776031494,
202
+ "learning_rate": 7.684331797235024e-05,
203
+ "loss": 0.5125,
204
+ "step": 1100
205
+ },
206
+ {
207
+ "epoch": 1.302463891248938,
208
+ "grad_norm": 0.8794203400611877,
209
+ "learning_rate": 7.108294930875576e-05,
210
+ "loss": 0.5383,
211
+ "step": 1150
212
+ },
213
+ {
214
+ "epoch": 1.3591050693854432,
215
+ "grad_norm": 0.9652652144432068,
216
+ "learning_rate": 6.532258064516129e-05,
217
+ "loss": 0.5184,
218
+ "step": 1200
219
+ },
220
+ {
221
+ "epoch": 1.3591050693854432,
222
+ "eval_loss": 0.5808290243148804,
223
+ "eval_runtime": 144.5522,
224
+ "eval_samples_per_second": 10.854,
225
+ "eval_steps_per_second": 2.719,
226
+ "step": 1200
227
+ },
228
+ {
229
+ "epoch": 1.4157462475219484,
230
+ "grad_norm": 0.8952807784080505,
231
+ "learning_rate": 5.956221198156682e-05,
232
+ "loss": 0.5398,
233
+ "step": 1250
234
+ },
235
+ {
236
+ "epoch": 1.4723874256584537,
237
+ "grad_norm": 0.8340632319450378,
238
+ "learning_rate": 5.3801843317972355e-05,
239
+ "loss": 0.5066,
240
+ "step": 1300
241
+ },
242
+ {
243
+ "epoch": 1.529028603794959,
244
+ "grad_norm": 1.2093769311904907,
245
+ "learning_rate": 4.8041474654377885e-05,
246
+ "loss": 0.5347,
247
+ "step": 1350
248
+ },
249
+ {
250
+ "epoch": 1.5856697819314642,
251
+ "grad_norm": 1.3850702047348022,
252
+ "learning_rate": 4.228110599078341e-05,
253
+ "loss": 0.4901,
254
+ "step": 1400
255
+ },
256
+ {
257
+ "epoch": 1.5856697819314642,
258
+ "eval_loss": 0.5830569267272949,
259
+ "eval_runtime": 144.2996,
260
+ "eval_samples_per_second": 10.873,
261
+ "eval_steps_per_second": 2.723,
262
+ "step": 1400
263
+ },
264
+ {
265
+ "epoch": 1.6423109600679693,
266
+ "grad_norm": 0.809190571308136,
267
+ "learning_rate": 3.6520737327188945e-05,
268
+ "loss": 0.5241,
269
+ "step": 1450
270
+ },
271
+ {
272
+ "epoch": 1.6989521382044748,
273
+ "grad_norm": 1.0073446035385132,
274
+ "learning_rate": 3.076036866359447e-05,
275
+ "loss": 0.5114,
276
+ "step": 1500
277
+ },
278
+ {
279
+ "epoch": 1.7555933163409798,
280
+ "grad_norm": 1.0417332649230957,
281
+ "learning_rate": 2.5e-05,
282
+ "loss": 0.519,
283
+ "step": 1550
284
+ },
285
+ {
286
+ "epoch": 1.812234494477485,
287
+ "grad_norm": 0.9849772453308105,
288
+ "learning_rate": 1.923963133640553e-05,
289
+ "loss": 0.5156,
290
+ "step": 1600
291
+ },
292
+ {
293
+ "epoch": 1.812234494477485,
294
+ "eval_loss": 0.5755766034126282,
295
+ "eval_runtime": 143.8724,
296
+ "eval_samples_per_second": 10.905,
297
+ "eval_steps_per_second": 2.732,
298
+ "step": 1600
299
+ },
300
+ {
301
+ "epoch": 1.8688756726139903,
302
+ "grad_norm": 1.2943501472473145,
303
+ "learning_rate": 1.3479262672811061e-05,
304
+ "loss": 0.5483,
305
+ "step": 1650
306
+ },
307
+ {
308
+ "epoch": 1.9255168507504956,
309
+ "grad_norm": 0.8810242414474487,
310
+ "learning_rate": 7.71889400921659e-06,
311
+ "loss": 0.5168,
312
+ "step": 1700
313
+ },
314
+ {
315
+ "epoch": 1.9821580288870009,
316
+ "grad_norm": 0.9415161609649658,
317
+ "learning_rate": 1.9585253456221198e-06,
318
+ "loss": 0.5176,
319
+ "step": 1750
320
+ },
321
+ {
322
+ "epoch": 2.0385160011328236,
323
+ "grad_norm": 1.0487638711929321,
324
+ "learning_rate": 6.491027109583811e-05,
325
+ "loss": 0.4455,
326
+ "step": 1800
327
+ },
328
+ {
329
+ "epoch": 2.0385160011328236,
330
+ "eval_loss": 0.587023138999939,
331
+ "eval_runtime": 144.0009,
332
+ "eval_samples_per_second": 10.896,
333
+ "eval_steps_per_second": 2.729,
334
+ "step": 1800
335
+ },
336
+ {
337
+ "epoch": 2.0951571792693287,
338
+ "grad_norm": 1.317651391029358,
339
+ "learning_rate": 6.109201985490646e-05,
340
+ "loss": 0.4665,
341
+ "step": 1850
342
+ },
343
+ {
344
+ "epoch": 2.151798357405834,
345
+ "grad_norm": 1.219244360923767,
346
+ "learning_rate": 5.72737686139748e-05,
347
+ "loss": 0.4964,
348
+ "step": 1900
349
+ },
350
+ {
351
+ "epoch": 2.208439535542339,
352
+ "grad_norm": 1.2626948356628418,
353
+ "learning_rate": 5.345551737304315e-05,
354
+ "loss": 0.479,
355
+ "step": 1950
356
+ },
357
+ {
358
+ "epoch": 2.2650807136788447,
359
+ "grad_norm": 1.3026907444000244,
360
+ "learning_rate": 4.963726613211149e-05,
361
+ "loss": 0.4713,
362
+ "step": 2000
363
+ },
364
+ {
365
+ "epoch": 2.2650807136788447,
366
+ "eval_loss": 0.5911725759506226,
367
+ "eval_runtime": 144.1844,
368
+ "eval_samples_per_second": 10.882,
369
+ "eval_steps_per_second": 2.726,
370
+ "step": 2000
371
+ },
372
+ {
373
+ "epoch": 2.3217218918153497,
374
+ "grad_norm": 1.0047467947006226,
375
+ "learning_rate": 4.581901489117984e-05,
376
+ "loss": 0.4794,
377
+ "step": 2050
378
+ },
379
+ {
380
+ "epoch": 2.378363069951855,
381
+ "grad_norm": 1.2122581005096436,
382
+ "learning_rate": 4.2000763650248184e-05,
383
+ "loss": 0.4771,
384
+ "step": 2100
385
+ },
386
+ {
387
+ "epoch": 2.4350042480883602,
388
+ "grad_norm": 1.2274476289749146,
389
+ "learning_rate": 3.818251240931654e-05,
390
+ "loss": 0.4691,
391
+ "step": 2150
392
+ },
393
+ {
394
+ "epoch": 2.4916454262248653,
395
+ "grad_norm": 1.0465933084487915,
396
+ "learning_rate": 3.4364261168384884e-05,
397
+ "loss": 0.4267,
398
+ "step": 2200
399
+ },
400
+ {
401
+ "epoch": 2.4916454262248653,
402
+ "eval_loss": 0.5909530520439148,
403
+ "eval_runtime": 143.9787,
404
+ "eval_samples_per_second": 10.897,
405
+ "eval_steps_per_second": 2.73,
406
+ "step": 2200
407
+ },
408
+ {
409
+ "epoch": 2.5482866043613708,
410
+ "grad_norm": 1.1270743608474731,
411
+ "learning_rate": 3.054600992745323e-05,
412
+ "loss": 0.4587,
413
+ "step": 2250
414
+ },
415
+ {
416
+ "epoch": 2.604927782497876,
417
+ "grad_norm": 1.0416178703308105,
418
+ "learning_rate": 2.6727758686521576e-05,
419
+ "loss": 0.4875,
420
+ "step": 2300
421
+ },
422
+ {
423
+ "epoch": 2.6615689606343813,
424
+ "grad_norm": 0.9418396353721619,
425
+ "learning_rate": 2.290950744558992e-05,
426
+ "loss": 0.4756,
427
+ "step": 2350
428
+ },
429
+ {
430
+ "epoch": 2.7182101387708864,
431
+ "grad_norm": 0.9481875896453857,
432
+ "learning_rate": 1.909125620465827e-05,
433
+ "loss": 0.4626,
434
+ "step": 2400
435
+ },
436
+ {
437
+ "epoch": 2.7182101387708864,
438
+ "eval_loss": 0.587207555770874,
439
+ "eval_runtime": 144.1702,
440
+ "eval_samples_per_second": 10.883,
441
+ "eval_steps_per_second": 2.726,
442
+ "step": 2400
443
+ },
444
+ {
445
+ "epoch": 2.774851316907392,
446
+ "grad_norm": 0.8298775553703308,
447
+ "learning_rate": 1.5273004963726615e-05,
448
+ "loss": 0.4396,
449
+ "step": 2450
450
+ },
451
+ {
452
+ "epoch": 2.831492495043897,
453
+ "grad_norm": 1.2271429300308228,
454
+ "learning_rate": 1.145475372279496e-05,
455
+ "loss": 0.4531,
456
+ "step": 2500
457
+ },
458
+ {
459
+ "epoch": 2.888133673180402,
460
+ "grad_norm": 1.2411454916000366,
461
+ "learning_rate": 7.636502481863307e-06,
462
+ "loss": 0.4647,
463
+ "step": 2550
464
+ },
465
+ {
466
+ "epoch": 2.9447748513169074,
467
+ "grad_norm": 1.449476718902588,
468
+ "learning_rate": 3.818251240931654e-06,
469
+ "loss": 0.4635,
470
+ "step": 2600
471
+ },
472
+ {
473
+ "epoch": 2.9447748513169074,
474
+ "eval_loss": 0.5865218639373779,
475
+ "eval_runtime": 143.9267,
476
+ "eval_samples_per_second": 10.901,
477
+ "eval_steps_per_second": 2.731,
478
+ "step": 2600
479
+ },
480
+ {
481
+ "epoch": 3.00113282356273,
482
+ "grad_norm": 0.9472671151161194,
483
+ "learning_rate": 0.0,
484
+ "loss": 0.3542,
485
+ "step": 2650
486
+ },
487
+ {
488
+ "epoch": 3.057774001699235,
489
+ "grad_norm": 1.101803183555603,
490
+ "learning_rate": 0.00011321736303040155,
491
+ "loss": 0.4194,
492
+ "step": 2700
493
+ },
494
+ {
495
+ "epoch": 3.1144151798357407,
496
+ "grad_norm": 1.1706457138061523,
497
+ "learning_rate": 0.00011159161112014307,
498
+ "loss": 0.4313,
499
+ "step": 2750
500
+ },
501
+ {
502
+ "epoch": 3.1710563579722457,
503
+ "grad_norm": 1.2929370403289795,
504
+ "learning_rate": 0.00010996585920988458,
505
+ "loss": 0.4418,
506
+ "step": 2800
507
+ },
508
+ {
509
+ "epoch": 3.1710563579722457,
510
+ "eval_loss": 0.60947585105896,
511
+ "eval_runtime": 153.6833,
512
+ "eval_samples_per_second": 10.209,
513
+ "eval_steps_per_second": 2.557,
514
+ "step": 2800
515
+ },
516
+ {
517
+ "epoch": 3.227697536108751,
518
+ "grad_norm": 1.3731728792190552,
519
+ "learning_rate": 0.00010834010729962609,
520
+ "loss": 0.4868,
521
+ "step": 2850
522
+ },
523
+ {
524
+ "epoch": 3.2843387142452563,
525
+ "grad_norm": 1.343711256980896,
526
+ "learning_rate": 0.00010671435538936759,
527
+ "loss": 0.4336,
528
+ "step": 2900
529
+ },
530
+ {
531
+ "epoch": 3.3409798923817613,
532
+ "grad_norm": 1.5197447538375854,
533
+ "learning_rate": 0.0001050886034791091,
534
+ "loss": 0.4789,
535
+ "step": 2950
536
+ },
537
+ {
538
+ "epoch": 3.397621070518267,
539
+ "grad_norm": 0.834096372127533,
540
+ "learning_rate": 0.00010346285156885061,
541
+ "loss": 0.4639,
542
+ "step": 3000
543
+ },
544
+ {
545
+ "epoch": 3.397621070518267,
546
+ "eval_loss": 0.6121659278869629,
547
+ "eval_runtime": 143.8631,
548
+ "eval_samples_per_second": 10.906,
549
+ "eval_steps_per_second": 2.732,
550
+ "step": 3000
551
+ },
552
+ {
553
+ "epoch": 3.454262248654772,
554
+ "grad_norm": 1.1350237131118774,
555
+ "learning_rate": 0.0001018370996585921,
556
+ "loss": 0.4591,
557
+ "step": 3050
558
+ },
559
+ {
560
+ "epoch": 3.5109034267912773,
561
+ "grad_norm": 1.269223928451538,
562
+ "learning_rate": 0.00010021134774833361,
563
+ "loss": 0.4679,
564
+ "step": 3100
565
+ },
566
+ {
567
+ "epoch": 3.5675446049277824,
568
+ "grad_norm": 1.1300125122070312,
569
+ "learning_rate": 9.858559583807512e-05,
570
+ "loss": 0.4619,
571
+ "step": 3150
572
+ },
573
+ {
574
+ "epoch": 3.624185783064288,
575
+ "grad_norm": 1.2352793216705322,
576
+ "learning_rate": 9.695984392781662e-05,
577
+ "loss": 0.48,
578
+ "step": 3200
579
+ },
580
+ {
581
+ "epoch": 3.624185783064288,
582
+ "eval_loss": 0.6045758724212646,
583
+ "eval_runtime": 144.0294,
584
+ "eval_samples_per_second": 10.894,
585
+ "eval_steps_per_second": 2.729,
586
+ "step": 3200
587
+ },
588
+ {
589
+ "epoch": 3.680826961200793,
590
+ "grad_norm": 1.3493255376815796,
591
+ "learning_rate": 9.533409201755813e-05,
592
+ "loss": 0.4838,
593
+ "step": 3250
594
+ },
595
+ {
596
+ "epoch": 3.7374681393372984,
597
+ "grad_norm": 1.3916635513305664,
598
+ "learning_rate": 9.370834010729963e-05,
599
+ "loss": 0.4899,
600
+ "step": 3300
601
+ },
602
+ {
603
+ "epoch": 3.7941093174738034,
604
+ "grad_norm": 1.4167906045913696,
605
+ "learning_rate": 9.208258819704113e-05,
606
+ "loss": 0.5017,
607
+ "step": 3350
608
+ },
609
+ {
610
+ "epoch": 3.850750495610309,
611
+ "grad_norm": 0.8912964463233948,
612
+ "learning_rate": 9.045683628678264e-05,
613
+ "loss": 0.4587,
614
+ "step": 3400
615
+ },
616
+ {
617
+ "epoch": 3.850750495610309,
618
+ "eval_loss": 0.5994317531585693,
619
+ "eval_runtime": 143.7834,
620
+ "eval_samples_per_second": 10.912,
621
+ "eval_steps_per_second": 2.733,
622
+ "step": 3400
623
+ },
624
+ {
625
+ "epoch": 3.907391673746814,
626
+ "grad_norm": 1.2601457834243774,
627
+ "learning_rate": 8.883108437652414e-05,
628
+ "loss": 0.4766,
629
+ "step": 3450
630
+ },
631
+ {
632
+ "epoch": 3.964032851883319,
633
+ "grad_norm": 1.1677194833755493,
634
+ "learning_rate": 8.720533246626565e-05,
635
+ "loss": 0.4616,
636
+ "step": 3500
637
+ },
638
+ {
639
+ "epoch": 4.020390824129142,
640
+ "grad_norm": 1.2599579095840454,
641
+ "learning_rate": 8.557958055600716e-05,
642
+ "loss": 0.4602,
643
+ "step": 3550
644
+ },
645
+ {
646
+ "epoch": 4.077032002265647,
647
+ "grad_norm": 0.9038525819778442,
648
+ "learning_rate": 8.395382864574867e-05,
649
+ "loss": 0.3565,
650
+ "step": 3600
651
+ },
652
+ {
653
+ "epoch": 4.077032002265647,
654
+ "eval_loss": 0.6232873797416687,
655
+ "eval_runtime": 143.721,
656
+ "eval_samples_per_second": 10.917,
657
+ "eval_steps_per_second": 2.734,
658
+ "step": 3600
659
+ },
660
+ {
661
+ "epoch": 4.133673180402153,
662
+ "grad_norm": 1.4113986492156982,
663
+ "learning_rate": 8.232807673549017e-05,
664
+ "loss": 0.4193,
665
+ "step": 3650
666
+ },
667
+ {
668
+ "epoch": 4.190314358538657,
669
+ "grad_norm": 1.1578692197799683,
670
+ "learning_rate": 8.070232482523168e-05,
671
+ "loss": 0.372,
672
+ "step": 3700
673
+ },
674
+ {
675
+ "epoch": 4.246955536675163,
676
+ "grad_norm": 1.4185764789581299,
677
+ "learning_rate": 7.907657291497318e-05,
678
+ "loss": 0.3647,
679
+ "step": 3750
680
+ },
681
+ {
682
+ "epoch": 4.303596714811668,
683
+ "grad_norm": 1.3464981317520142,
684
+ "learning_rate": 7.745082100471468e-05,
685
+ "loss": 0.3745,
686
+ "step": 3800
687
+ },
688
+ {
689
+ "epoch": 4.303596714811668,
690
+ "eval_loss": 0.6339591145515442,
691
+ "eval_runtime": 143.7966,
692
+ "eval_samples_per_second": 10.911,
693
+ "eval_steps_per_second": 2.733,
694
+ "step": 3800
695
+ },
696
+ {
697
+ "epoch": 4.360237892948174,
698
+ "grad_norm": 1.323198676109314,
699
+ "learning_rate": 7.582506909445619e-05,
700
+ "loss": 0.3839,
701
+ "step": 3850
702
+ },
703
+ {
704
+ "epoch": 4.416879071084678,
705
+ "grad_norm": 1.8854613304138184,
706
+ "learning_rate": 7.419931718419769e-05,
707
+ "loss": 0.4328,
708
+ "step": 3900
709
+ },
710
+ {
711
+ "epoch": 4.473520249221184,
712
+ "grad_norm": 0.9551966786384583,
713
+ "learning_rate": 7.25735652739392e-05,
714
+ "loss": 0.3816,
715
+ "step": 3950
716
+ },
717
+ {
718
+ "epoch": 4.530161427357689,
719
+ "grad_norm": 1.1180638074874878,
720
+ "learning_rate": 7.09478133636807e-05,
721
+ "loss": 0.4019,
722
+ "step": 4000
723
+ },
724
+ {
725
+ "epoch": 4.530161427357689,
726
+ "eval_loss": 0.629741907119751,
727
+ "eval_runtime": 144.0805,
728
+ "eval_samples_per_second": 10.89,
729
+ "eval_steps_per_second": 2.728,
730
+ "step": 4000
731
+ },
732
+ {
733
+ "epoch": 4.586802605494194,
734
+ "grad_norm": 1.5229169130325317,
735
+ "learning_rate": 6.932206145342221e-05,
736
+ "loss": 0.3794,
737
+ "step": 4050
738
+ },
739
+ {
740
+ "epoch": 4.643443783630699,
741
+ "grad_norm": 1.1407935619354248,
742
+ "learning_rate": 6.769630954316372e-05,
743
+ "loss": 0.3911,
744
+ "step": 4100
745
+ },
746
+ {
747
+ "epoch": 4.700084961767205,
748
+ "grad_norm": 1.4342515468597412,
749
+ "learning_rate": 6.607055763290522e-05,
750
+ "loss": 0.3757,
751
+ "step": 4150
752
+ },
753
+ {
754
+ "epoch": 4.75672613990371,
755
+ "grad_norm": 1.471047282218933,
756
+ "learning_rate": 6.444480572264673e-05,
757
+ "loss": 0.4043,
758
+ "step": 4200
759
+ },
760
+ {
761
+ "epoch": 4.75672613990371,
762
+ "eval_loss": 0.6323012709617615,
763
+ "eval_runtime": 143.8107,
764
+ "eval_samples_per_second": 10.91,
765
+ "eval_steps_per_second": 2.733,
766
+ "step": 4200
767
+ },
768
+ {
769
+ "epoch": 4.813367318040215,
770
+ "grad_norm": 1.6963218450546265,
771
+ "learning_rate": 6.281905381238823e-05,
772
+ "loss": 0.3817,
773
+ "step": 4250
774
+ },
775
+ {
776
+ "epoch": 4.8700084961767205,
777
+ "grad_norm": 1.4788011312484741,
778
+ "learning_rate": 6.119330190212974e-05,
779
+ "loss": 0.3879,
780
+ "step": 4300
781
+ },
782
+ {
783
+ "epoch": 4.926649674313226,
784
+ "grad_norm": 1.5147647857666016,
785
+ "learning_rate": 5.956754999187124e-05,
786
+ "loss": 0.3874,
787
+ "step": 4350
788
+ },
789
+ {
790
+ "epoch": 4.983290852449731,
791
+ "grad_norm": 1.027481198310852,
792
+ "learning_rate": 5.794179808161275e-05,
793
+ "loss": 0.3736,
794
+ "step": 4400
795
+ },
796
+ {
797
+ "epoch": 4.983290852449731,
798
+ "eval_loss": 0.6303974390029907,
799
+ "eval_runtime": 143.9543,
800
+ "eval_samples_per_second": 10.899,
801
+ "eval_steps_per_second": 2.73,
802
+ "step": 4400
803
+ },
804
+ {
805
+ "epoch": 5.039648824695553,
806
+ "grad_norm": 1.2473069429397583,
807
+ "learning_rate": 5.631604617135425e-05,
808
+ "loss": 0.33,
809
+ "step": 4450
810
+ },
811
+ {
812
+ "epoch": 5.096290002832059,
813
+ "grad_norm": 1.439157485961914,
814
+ "learning_rate": 5.469029426109576e-05,
815
+ "loss": 0.3065,
816
+ "step": 4500
817
+ },
818
+ {
819
+ "epoch": 5.152931180968564,
820
+ "grad_norm": 1.172194480895996,
821
+ "learning_rate": 5.306454235083727e-05,
822
+ "loss": 0.3038,
823
+ "step": 4550
824
+ },
825
+ {
826
+ "epoch": 5.20957235910507,
827
+ "grad_norm": 2.9354825019836426,
828
+ "learning_rate": 5.1438790440578765e-05,
829
+ "loss": 0.2961,
830
+ "step": 4600
831
+ },
832
+ {
833
+ "epoch": 5.20957235910507,
834
+ "eval_loss": 0.6725755929946899,
835
+ "eval_runtime": 143.751,
836
+ "eval_samples_per_second": 10.915,
837
+ "eval_steps_per_second": 2.734,
838
+ "step": 4600
839
+ },
840
+ {
841
+ "epoch": 5.266213537241574,
842
+ "grad_norm": 1.7553826570510864,
843
+ "learning_rate": 4.981303853032028e-05,
844
+ "loss": 0.3055,
845
+ "step": 4650
846
+ },
847
+ {
848
+ "epoch": 5.32285471537808,
849
+ "grad_norm": 1.1259921789169312,
850
+ "learning_rate": 4.818728662006178e-05,
851
+ "loss": 0.3052,
852
+ "step": 4700
853
+ },
854
+ {
855
+ "epoch": 5.379495893514585,
856
+ "grad_norm": 1.2912168502807617,
857
+ "learning_rate": 4.656153470980329e-05,
858
+ "loss": 0.3168,
859
+ "step": 4750
860
+ },
861
+ {
862
+ "epoch": 5.43613707165109,
863
+ "grad_norm": 1.3614895343780518,
864
+ "learning_rate": 4.493578279954479e-05,
865
+ "loss": 0.3024,
866
+ "step": 4800
867
+ },
868
+ {
869
+ "epoch": 5.43613707165109,
870
+ "eval_loss": 0.6745353937149048,
871
+ "eval_runtime": 143.4345,
872
+ "eval_samples_per_second": 10.939,
873
+ "eval_steps_per_second": 2.74,
874
+ "step": 4800
875
+ },
876
+ {
877
+ "epoch": 5.492778249787595,
878
+ "grad_norm": 1.4940049648284912,
879
+ "learning_rate": 4.33100308892863e-05,
880
+ "loss": 0.3281,
881
+ "step": 4850
882
+ },
883
+ {
884
+ "epoch": 5.549419427924101,
885
+ "grad_norm": 1.3145006895065308,
886
+ "learning_rate": 4.16842789790278e-05,
887
+ "loss": 0.2955,
888
+ "step": 4900
889
+ },
890
+ {
891
+ "epoch": 5.606060606060606,
892
+ "grad_norm": 1.6090342998504639,
893
+ "learning_rate": 4.005852706876931e-05,
894
+ "loss": 0.3351,
895
+ "step": 4950
896
+ },
897
+ {
898
+ "epoch": 5.662701784197111,
899
+ "grad_norm": 1.2353523969650269,
900
+ "learning_rate": 3.843277515851081e-05,
901
+ "loss": 0.3146,
902
+ "step": 5000
903
+ },
904
+ {
905
+ "epoch": 5.662701784197111,
906
+ "eval_loss": 0.6648290753364563,
907
+ "eval_runtime": 143.6635,
908
+ "eval_samples_per_second": 10.921,
909
+ "eval_steps_per_second": 2.736,
910
+ "step": 5000
911
+ },
912
+ {
913
+ "epoch": 5.7193429623336165,
914
+ "grad_norm": 1.4121828079223633,
915
+ "learning_rate": 3.680702324825232e-05,
916
+ "loss": 0.3252,
917
+ "step": 5050
918
+ },
919
+ {
920
+ "epoch": 5.775984140470122,
921
+ "grad_norm": 1.6109447479248047,
922
+ "learning_rate": 3.518127133799383e-05,
923
+ "loss": 0.2894,
924
+ "step": 5100
925
+ },
926
+ {
927
+ "epoch": 5.8326253186066275,
928
+ "grad_norm": 1.2615262269973755,
929
+ "learning_rate": 3.355551942773533e-05,
930
+ "loss": 0.3233,
931
+ "step": 5150
932
+ },
933
+ {
934
+ "epoch": 5.889266496743132,
935
+ "grad_norm": 1.4789379835128784,
936
+ "learning_rate": 3.192976751747683e-05,
937
+ "loss": 0.3136,
938
+ "step": 5200
939
+ },
940
+ {
941
+ "epoch": 5.889266496743132,
942
+ "eval_loss": 0.6699800491333008,
943
+ "eval_runtime": 143.914,
944
+ "eval_samples_per_second": 10.902,
945
+ "eval_steps_per_second": 2.731,
946
+ "step": 5200
947
+ },
948
+ {
949
+ "epoch": 5.945907674879638,
950
+ "grad_norm": 1.5867825746536255,
951
+ "learning_rate": 3.0304015607218337e-05,
952
+ "loss": 0.3398,
953
+ "step": 5250
954
+ },
955
+ {
956
+ "epoch": 6.00226564712546,
957
+ "grad_norm": 1.981821060180664,
958
+ "learning_rate": 2.8678263696959846e-05,
959
+ "loss": 0.2998,
960
+ "step": 5300
961
+ },
962
+ {
963
+ "epoch": 6.058906825261966,
964
+ "grad_norm": 1.178331971168518,
965
+ "learning_rate": 2.705251178670135e-05,
966
+ "loss": 0.2447,
967
+ "step": 5350
968
+ },
969
+ {
970
+ "epoch": 6.11554800339847,
971
+ "grad_norm": 1.5027756690979004,
972
+ "learning_rate": 2.5426759876442856e-05,
973
+ "loss": 0.2448,
974
+ "step": 5400
975
+ },
976
+ {
977
+ "epoch": 6.11554800339847,
978
+ "eval_loss": 0.7178024053573608,
979
+ "eval_runtime": 143.9568,
980
+ "eval_samples_per_second": 10.899,
981
+ "eval_steps_per_second": 2.73,
982
+ "step": 5400
983
+ },
984
+ {
985
+ "epoch": 6.172189181534976,
986
+ "grad_norm": 1.1384133100509644,
987
+ "learning_rate": 2.380100796618436e-05,
988
+ "loss": 0.2616,
989
+ "step": 5450
990
+ },
991
+ {
992
+ "epoch": 6.228830359671481,
993
+ "grad_norm": 1.4748141765594482,
994
+ "learning_rate": 2.2175256055925866e-05,
995
+ "loss": 0.2325,
996
+ "step": 5500
997
+ },
998
+ {
999
+ "epoch": 6.285471537807986,
1000
+ "grad_norm": 1.6163220405578613,
1001
+ "learning_rate": 2.054950414566737e-05,
1002
+ "loss": 0.2493,
1003
+ "step": 5550
1004
+ },
1005
+ {
1006
+ "epoch": 6.342112715944491,
1007
+ "grad_norm": 1.3263028860092163,
1008
+ "learning_rate": 1.892375223540888e-05,
1009
+ "loss": 0.2615,
1010
+ "step": 5600
1011
+ },
1012
+ {
1013
+ "epoch": 6.342112715944491,
1014
+ "eval_loss": 0.726570725440979,
1015
+ "eval_runtime": 143.4083,
1016
+ "eval_samples_per_second": 10.941,
1017
+ "eval_steps_per_second": 2.74,
1018
+ "step": 5600
1019
+ },
1020
+ {
1021
+ "epoch": 6.398753894080997,
1022
+ "grad_norm": 1.046238660812378,
1023
+ "learning_rate": 1.729800032515038e-05,
1024
+ "loss": 0.2335,
1025
+ "step": 5650
1026
+ },
1027
+ {
1028
+ "epoch": 6.455395072217502,
1029
+ "grad_norm": 1.156273603439331,
1030
+ "learning_rate": 1.567224841489189e-05,
1031
+ "loss": 0.2402,
1032
+ "step": 5700
1033
+ },
1034
+ {
1035
+ "epoch": 6.512036250354007,
1036
+ "grad_norm": 1.6315362453460693,
1037
+ "learning_rate": 1.4046496504633394e-05,
1038
+ "loss": 0.2584,
1039
+ "step": 5750
1040
+ },
1041
+ {
1042
+ "epoch": 6.5686774284905125,
1043
+ "grad_norm": 1.2109113931655884,
1044
+ "learning_rate": 1.24207445943749e-05,
1045
+ "loss": 0.2446,
1046
+ "step": 5800
1047
+ },
1048
+ {
1049
+ "epoch": 6.5686774284905125,
1050
+ "eval_loss": 0.731035590171814,
1051
+ "eval_runtime": 144.0173,
1052
+ "eval_samples_per_second": 10.895,
1053
+ "eval_steps_per_second": 2.729,
1054
+ "step": 5800
1055
+ },
1056
+ {
1057
+ "epoch": 6.625318606627018,
1058
+ "grad_norm": 1.3548364639282227,
1059
+ "learning_rate": 1.0794992684116404e-05,
1060
+ "loss": 0.2511,
1061
+ "step": 5850
1062
+ },
1063
+ {
1064
+ "epoch": 6.681959784763523,
1065
+ "grad_norm": 1.3163737058639526,
1066
+ "learning_rate": 9.16924077385791e-06,
1067
+ "loss": 0.2351,
1068
+ "step": 5900
1069
+ },
1070
+ {
1071
+ "epoch": 6.738600962900028,
1072
+ "grad_norm": 1.1973426342010498,
1073
+ "learning_rate": 7.543488863599415e-06,
1074
+ "loss": 0.2399,
1075
+ "step": 5950
1076
+ },
1077
+ {
1078
+ "epoch": 6.795242141036534,
1079
+ "grad_norm": 1.3192789554595947,
1080
+ "learning_rate": 5.91773695334092e-06,
1081
+ "loss": 0.2559,
1082
+ "step": 6000
1083
+ },
1084
+ {
1085
+ "epoch": 6.795242141036534,
1086
+ "eval_loss": 0.7207013368606567,
1087
+ "eval_runtime": 143.7446,
1088
+ "eval_samples_per_second": 10.915,
1089
+ "eval_steps_per_second": 2.734,
1090
+ "step": 6000
1091
+ }
1092
+ ],
1093
+ "logging_steps": 50,
1094
+ "max_steps": 6181,
1095
+ "num_input_tokens_seen": 0,
1096
+ "num_train_epochs": 7,
1097
+ "save_steps": 200,
1098
+ "stateful_callbacks": {
1099
+ "TrainerControl": {
1100
+ "args": {
1101
+ "should_epoch_stop": false,
1102
+ "should_evaluate": false,
1103
+ "should_log": false,
1104
+ "should_save": true,
1105
+ "should_training_stop": false
1106
+ },
1107
+ "attributes": {}
1108
+ }
1109
+ },
1110
+ "total_flos": 2.021077531715881e+17,
1111
+ "train_batch_size": 4,
1112
+ "trial_name": null,
1113
+ "trial_params": null
1114
+ }
checkpoint-6000/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:24dbce934bdef4e393ace30f47e87259f49a5fb82c9b1cf4c325f7d12c72c1cf
3
+ size 5688
checkpoint-6181/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: unsloth/gemma-3-1b-it-unsloth-bnb-4bit
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.14.0
checkpoint-6181/adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "unsloth/gemma-3-1b-it-unsloth-bnb-4bit",
5
+ "bias": "none",
6
+ "eva_config": null,
7
+ "exclude_modules": null,
8
+ "fan_in_fan_out": false,
9
+ "inference_mode": true,
10
+ "init_lora_weights": true,
11
+ "layer_replication": null,
12
+ "layers_pattern": null,
13
+ "layers_to_transform": null,
14
+ "loftq_config": {},
15
+ "lora_alpha": 8,
16
+ "lora_bias": false,
17
+ "lora_dropout": 0,
18
+ "megatron_config": null,
19
+ "megatron_core": "megatron.core",
20
+ "modules_to_save": null,
21
+ "peft_type": "LORA",
22
+ "r": 16,
23
+ "rank_pattern": {},
24
+ "revision": null,
25
+ "target_modules": "(?:.*?(?:language|text).*?(?:self_attn|attention|attn|mlp|feed_forward|ffn|dense).*?(?:q_proj|k_proj|v_proj|o_proj|gate_proj|up_proj|down_proj).*?)|(?:\\bmodel\\.layers\\.[\\d]{1,}\\.(?:self_attn|attention|attn|mlp|feed_forward|ffn|dense)\\.(?:(?:q_proj|k_proj|v_proj|o_proj|gate_proj|up_proj|down_proj)))",
26
+ "task_type": "CAUSAL_LM",
27
+ "use_dora": false,
28
+ "use_rslora": false
29
+ }
checkpoint-6181/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d4c3a35b62a6eb804c7c1bfb5aaafe834771f22ddecd95d3e047e3258c04327e
3
+ size 52231312
checkpoint-6181/added_tokens.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "<image_soft_token>": 262144
3
+ }
checkpoint-6181/chat_template.jinja ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {{ bos_token }}
2
+ {%- if messages[0]['role'] == 'system' -%}
3
+ {%- if messages[0]['content'] is string -%}
4
+ {%- set first_user_prefix = messages[0]['content'] + '
5
+
6
+ ' -%}
7
+ {%- else -%}
8
+ {%- set first_user_prefix = messages[0]['content'][0]['text'] + '
9
+
10
+ ' -%}
11
+ {%- endif -%}
12
+ {%- set loop_messages = messages[1:] -%}
13
+ {%- else -%}
14
+ {%- set first_user_prefix = "" -%}
15
+ {%- set loop_messages = messages -%}
16
+ {%- endif -%}
17
+ {%- for message in loop_messages -%}
18
+ {%- if (message['role'] == 'user') != (loop.index0 % 2 == 0) -%}
19
+ {{ raise_exception("Conversation roles must alternate user/assistant/user/assistant/...") }}
20
+ {%- endif -%}
21
+ {%- if (message['role'] == 'assistant') -%}
22
+ {%- set role = "model" -%}
23
+ {%- else -%}
24
+ {%- set role = message['role'] -%}
25
+ {%- endif -%}
26
+ {{ '<start_of_turn>' + role + '
27
+ ' + (first_user_prefix if loop.first else "") }}
28
+ {%- if message['content'] is string -%}
29
+ {{ message['content'] | trim }}
30
+ {%- elif message['content'] is iterable -%}
31
+ {%- for item in message['content'] -%}
32
+ {%- if item['type'] == 'image' -%}
33
+ {{ '<start_of_image>' }}
34
+ {%- elif item['type'] == 'text' -%}
35
+ {{ item['text'] | trim }}
36
+ {%- endif -%}
37
+ {%- endfor -%}
38
+ {%- else -%}
39
+ {{ raise_exception("Invalid content type") }}
40
+ {%- endif -%}
41
+ {{ '<end_of_turn>
42
+ ' }}
43
+ {%- endfor -%}
44
+ {%- if add_generation_prompt -%}
45
+ {{ '<start_of_turn>model
46
+ ' }}
47
+ {%- endif -%}
checkpoint-6181/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ff07e4a81a3036a8562fbb12e39e0c02f236eaeb75ea773e4f73c43aa4eb7f8c
3
+ size 27860634
checkpoint-6181/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e2b0d4622ef35d3b8f3ea1592bf278ce61bee81cf5bac712353ad99788b7c094
3
+ size 14244
checkpoint-6181/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6a4539b747ab868e03088bf0baa13b51dc06a3deab7873e47bb41efee65f768d
3
+ size 1064
checkpoint-6181/special_tokens_map.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "boi_token": "<start_of_image>",
3
+ "bos_token": {
4
+ "content": "<bos>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false
9
+ },
10
+ "eoi_token": "<end_of_image>",
11
+ "eos_token": {
12
+ "content": "<end_of_turn>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false
17
+ },
18
+ "image_token": "<image_soft_token>",
19
+ "pad_token": {
20
+ "content": "<pad>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false
25
+ },
26
+ "unk_token": {
27
+ "content": "<unk>",
28
+ "lstrip": false,
29
+ "normalized": false,
30
+ "rstrip": false,
31
+ "single_word": false
32
+ }
33
+ }
checkpoint-6181/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4667f2089529e8e7657cfb6d1c19910ae71ff5f28aa7ab2ff2763330affad795
3
+ size 33384568
checkpoint-6181/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1299c11d7cf632ef3b4e11937501358ada021bbdf7c47638d13c0ee982f2e79c
3
+ size 4689074
checkpoint-6181/tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-6181/trainer_state.json ADDED
@@ -0,0 +1,1135 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": 800,
3
+ "best_metric": 0.57286536693573,
4
+ "best_model_checkpoint": "Gemma-3-1B-it-Medical-LoRA/checkpoint-800",
5
+ "epoch": 7.0,
6
+ "eval_steps": 200,
7
+ "global_step": 6181,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.05664117813650524,
14
+ "grad_norm": 0.7655816078186035,
15
+ "learning_rate": 0.0001955451348182884,
16
+ "loss": 0.9427,
17
+ "step": 50
18
+ },
19
+ {
20
+ "epoch": 0.11328235627301048,
21
+ "grad_norm": 0.7325181365013123,
22
+ "learning_rate": 0.00018382180539273154,
23
+ "loss": 0.6075,
24
+ "step": 100
25
+ },
26
+ {
27
+ "epoch": 0.16992353440951571,
28
+ "grad_norm": 0.6365712881088257,
29
+ "learning_rate": 0.00017209847596717467,
30
+ "loss": 0.675,
31
+ "step": 150
32
+ },
33
+ {
34
+ "epoch": 0.22656471254602095,
35
+ "grad_norm": 0.9989428520202637,
36
+ "learning_rate": 0.00016037514654161782,
37
+ "loss": 0.6585,
38
+ "step": 200
39
+ },
40
+ {
41
+ "epoch": 0.22656471254602095,
42
+ "eval_loss": 0.6068728566169739,
43
+ "eval_runtime": 154.0009,
44
+ "eval_samples_per_second": 10.188,
45
+ "eval_steps_per_second": 2.552,
46
+ "step": 200
47
+ },
48
+ {
49
+ "epoch": 0.2832058906825262,
50
+ "grad_norm": 0.6311811208724976,
51
+ "learning_rate": 0.00014865181711606098,
52
+ "loss": 0.6311,
53
+ "step": 250
54
+ },
55
+ {
56
+ "epoch": 0.33984706881903143,
57
+ "grad_norm": 0.831785261631012,
58
+ "learning_rate": 0.0001369284876905041,
59
+ "loss": 0.5715,
60
+ "step": 300
61
+ },
62
+ {
63
+ "epoch": 0.3964882469555367,
64
+ "grad_norm": 0.7572771310806274,
65
+ "learning_rate": 0.00012520515826494724,
66
+ "loss": 0.5482,
67
+ "step": 350
68
+ },
69
+ {
70
+ "epoch": 0.4531294250920419,
71
+ "grad_norm": 0.715999960899353,
72
+ "learning_rate": 0.0001134818288393904,
73
+ "loss": 0.5674,
74
+ "step": 400
75
+ },
76
+ {
77
+ "epoch": 0.4531294250920419,
78
+ "eval_loss": 0.5926390290260315,
79
+ "eval_runtime": 144.007,
80
+ "eval_samples_per_second": 10.895,
81
+ "eval_steps_per_second": 2.729,
82
+ "step": 400
83
+ },
84
+ {
85
+ "epoch": 0.5097706032285472,
86
+ "grad_norm": 0.8048545122146606,
87
+ "learning_rate": 0.00010175849941383353,
88
+ "loss": 0.5664,
89
+ "step": 450
90
+ },
91
+ {
92
+ "epoch": 0.5664117813650524,
93
+ "grad_norm": 0.994825541973114,
94
+ "learning_rate": 9.003516998827668e-05,
95
+ "loss": 0.6381,
96
+ "step": 500
97
+ },
98
+ {
99
+ "epoch": 0.6230529595015576,
100
+ "grad_norm": 0.8860945105552673,
101
+ "learning_rate": 7.831184056271981e-05,
102
+ "loss": 0.5774,
103
+ "step": 550
104
+ },
105
+ {
106
+ "epoch": 0.6796941376380629,
107
+ "grad_norm": 0.7308331727981567,
108
+ "learning_rate": 6.658851113716296e-05,
109
+ "loss": 0.5827,
110
+ "step": 600
111
+ },
112
+ {
113
+ "epoch": 0.6796941376380629,
114
+ "eval_loss": 0.580059826374054,
115
+ "eval_runtime": 144.3097,
116
+ "eval_samples_per_second": 10.872,
117
+ "eval_steps_per_second": 2.723,
118
+ "step": 600
119
+ },
120
+ {
121
+ "epoch": 0.7363353157745681,
122
+ "grad_norm": 0.8322684168815613,
123
+ "learning_rate": 5.486518171160609e-05,
124
+ "loss": 0.599,
125
+ "step": 650
126
+ },
127
+ {
128
+ "epoch": 0.7929764939110734,
129
+ "grad_norm": 1.0585319995880127,
130
+ "learning_rate": 4.3141852286049237e-05,
131
+ "loss": 0.631,
132
+ "step": 700
133
+ },
134
+ {
135
+ "epoch": 0.8496176720475785,
136
+ "grad_norm": 1.00983726978302,
137
+ "learning_rate": 3.1418522860492386e-05,
138
+ "loss": 0.5947,
139
+ "step": 750
140
+ },
141
+ {
142
+ "epoch": 0.9062588501840838,
143
+ "grad_norm": 0.6543359160423279,
144
+ "learning_rate": 1.9695193434935523e-05,
145
+ "loss": 0.5665,
146
+ "step": 800
147
+ },
148
+ {
149
+ "epoch": 0.9062588501840838,
150
+ "eval_loss": 0.57286536693573,
151
+ "eval_runtime": 144.191,
152
+ "eval_samples_per_second": 10.881,
153
+ "eval_steps_per_second": 2.726,
154
+ "step": 800
155
+ },
156
+ {
157
+ "epoch": 0.9629000283205891,
158
+ "grad_norm": 0.960976779460907,
159
+ "learning_rate": 7.971864009378664e-06,
160
+ "loss": 0.5712,
161
+ "step": 850
162
+ },
163
+ {
164
+ "epoch": 1.0192580005664118,
165
+ "grad_norm": 0.8420133590698242,
166
+ "learning_rate": 9.988479262672812e-05,
167
+ "loss": 0.5028,
168
+ "step": 900
169
+ },
170
+ {
171
+ "epoch": 1.075899178702917,
172
+ "grad_norm": 0.8027368187904358,
173
+ "learning_rate": 9.412442396313365e-05,
174
+ "loss": 0.5148,
175
+ "step": 950
176
+ },
177
+ {
178
+ "epoch": 1.1325403568394223,
179
+ "grad_norm": 0.7591931223869324,
180
+ "learning_rate": 8.836405529953917e-05,
181
+ "loss": 0.4944,
182
+ "step": 1000
183
+ },
184
+ {
185
+ "epoch": 1.1325403568394223,
186
+ "eval_loss": 0.5851833820343018,
187
+ "eval_runtime": 144.0876,
188
+ "eval_samples_per_second": 10.889,
189
+ "eval_steps_per_second": 2.728,
190
+ "step": 1000
191
+ },
192
+ {
193
+ "epoch": 1.1891815349759276,
194
+ "grad_norm": 0.8245683312416077,
195
+ "learning_rate": 8.26036866359447e-05,
196
+ "loss": 0.5582,
197
+ "step": 1050
198
+ },
199
+ {
200
+ "epoch": 1.2458227131124326,
201
+ "grad_norm": 0.8791372776031494,
202
+ "learning_rate": 7.684331797235024e-05,
203
+ "loss": 0.5125,
204
+ "step": 1100
205
+ },
206
+ {
207
+ "epoch": 1.302463891248938,
208
+ "grad_norm": 0.8794203400611877,
209
+ "learning_rate": 7.108294930875576e-05,
210
+ "loss": 0.5383,
211
+ "step": 1150
212
+ },
213
+ {
214
+ "epoch": 1.3591050693854432,
215
+ "grad_norm": 0.9652652144432068,
216
+ "learning_rate": 6.532258064516129e-05,
217
+ "loss": 0.5184,
218
+ "step": 1200
219
+ },
220
+ {
221
+ "epoch": 1.3591050693854432,
222
+ "eval_loss": 0.5808290243148804,
223
+ "eval_runtime": 144.5522,
224
+ "eval_samples_per_second": 10.854,
225
+ "eval_steps_per_second": 2.719,
226
+ "step": 1200
227
+ },
228
+ {
229
+ "epoch": 1.4157462475219484,
230
+ "grad_norm": 0.8952807784080505,
231
+ "learning_rate": 5.956221198156682e-05,
232
+ "loss": 0.5398,
233
+ "step": 1250
234
+ },
235
+ {
236
+ "epoch": 1.4723874256584537,
237
+ "grad_norm": 0.8340632319450378,
238
+ "learning_rate": 5.3801843317972355e-05,
239
+ "loss": 0.5066,
240
+ "step": 1300
241
+ },
242
+ {
243
+ "epoch": 1.529028603794959,
244
+ "grad_norm": 1.2093769311904907,
245
+ "learning_rate": 4.8041474654377885e-05,
246
+ "loss": 0.5347,
247
+ "step": 1350
248
+ },
249
+ {
250
+ "epoch": 1.5856697819314642,
251
+ "grad_norm": 1.3850702047348022,
252
+ "learning_rate": 4.228110599078341e-05,
253
+ "loss": 0.4901,
254
+ "step": 1400
255
+ },
256
+ {
257
+ "epoch": 1.5856697819314642,
258
+ "eval_loss": 0.5830569267272949,
259
+ "eval_runtime": 144.2996,
260
+ "eval_samples_per_second": 10.873,
261
+ "eval_steps_per_second": 2.723,
262
+ "step": 1400
263
+ },
264
+ {
265
+ "epoch": 1.6423109600679693,
266
+ "grad_norm": 0.809190571308136,
267
+ "learning_rate": 3.6520737327188945e-05,
268
+ "loss": 0.5241,
269
+ "step": 1450
270
+ },
271
+ {
272
+ "epoch": 1.6989521382044748,
273
+ "grad_norm": 1.0073446035385132,
274
+ "learning_rate": 3.076036866359447e-05,
275
+ "loss": 0.5114,
276
+ "step": 1500
277
+ },
278
+ {
279
+ "epoch": 1.7555933163409798,
280
+ "grad_norm": 1.0417332649230957,
281
+ "learning_rate": 2.5e-05,
282
+ "loss": 0.519,
283
+ "step": 1550
284
+ },
285
+ {
286
+ "epoch": 1.812234494477485,
287
+ "grad_norm": 0.9849772453308105,
288
+ "learning_rate": 1.923963133640553e-05,
289
+ "loss": 0.5156,
290
+ "step": 1600
291
+ },
292
+ {
293
+ "epoch": 1.812234494477485,
294
+ "eval_loss": 0.5755766034126282,
295
+ "eval_runtime": 143.8724,
296
+ "eval_samples_per_second": 10.905,
297
+ "eval_steps_per_second": 2.732,
298
+ "step": 1600
299
+ },
300
+ {
301
+ "epoch": 1.8688756726139903,
302
+ "grad_norm": 1.2943501472473145,
303
+ "learning_rate": 1.3479262672811061e-05,
304
+ "loss": 0.5483,
305
+ "step": 1650
306
+ },
307
+ {
308
+ "epoch": 1.9255168507504956,
309
+ "grad_norm": 0.8810242414474487,
310
+ "learning_rate": 7.71889400921659e-06,
311
+ "loss": 0.5168,
312
+ "step": 1700
313
+ },
314
+ {
315
+ "epoch": 1.9821580288870009,
316
+ "grad_norm": 0.9415161609649658,
317
+ "learning_rate": 1.9585253456221198e-06,
318
+ "loss": 0.5176,
319
+ "step": 1750
320
+ },
321
+ {
322
+ "epoch": 2.0385160011328236,
323
+ "grad_norm": 1.0487638711929321,
324
+ "learning_rate": 6.491027109583811e-05,
325
+ "loss": 0.4455,
326
+ "step": 1800
327
+ },
328
+ {
329
+ "epoch": 2.0385160011328236,
330
+ "eval_loss": 0.587023138999939,
331
+ "eval_runtime": 144.0009,
332
+ "eval_samples_per_second": 10.896,
333
+ "eval_steps_per_second": 2.729,
334
+ "step": 1800
335
+ },
336
+ {
337
+ "epoch": 2.0951571792693287,
338
+ "grad_norm": 1.317651391029358,
339
+ "learning_rate": 6.109201985490646e-05,
340
+ "loss": 0.4665,
341
+ "step": 1850
342
+ },
343
+ {
344
+ "epoch": 2.151798357405834,
345
+ "grad_norm": 1.219244360923767,
346
+ "learning_rate": 5.72737686139748e-05,
347
+ "loss": 0.4964,
348
+ "step": 1900
349
+ },
350
+ {
351
+ "epoch": 2.208439535542339,
352
+ "grad_norm": 1.2626948356628418,
353
+ "learning_rate": 5.345551737304315e-05,
354
+ "loss": 0.479,
355
+ "step": 1950
356
+ },
357
+ {
358
+ "epoch": 2.2650807136788447,
359
+ "grad_norm": 1.3026907444000244,
360
+ "learning_rate": 4.963726613211149e-05,
361
+ "loss": 0.4713,
362
+ "step": 2000
363
+ },
364
+ {
365
+ "epoch": 2.2650807136788447,
366
+ "eval_loss": 0.5911725759506226,
367
+ "eval_runtime": 144.1844,
368
+ "eval_samples_per_second": 10.882,
369
+ "eval_steps_per_second": 2.726,
370
+ "step": 2000
371
+ },
372
+ {
373
+ "epoch": 2.3217218918153497,
374
+ "grad_norm": 1.0047467947006226,
375
+ "learning_rate": 4.581901489117984e-05,
376
+ "loss": 0.4794,
377
+ "step": 2050
378
+ },
379
+ {
380
+ "epoch": 2.378363069951855,
381
+ "grad_norm": 1.2122581005096436,
382
+ "learning_rate": 4.2000763650248184e-05,
383
+ "loss": 0.4771,
384
+ "step": 2100
385
+ },
386
+ {
387
+ "epoch": 2.4350042480883602,
388
+ "grad_norm": 1.2274476289749146,
389
+ "learning_rate": 3.818251240931654e-05,
390
+ "loss": 0.4691,
391
+ "step": 2150
392
+ },
393
+ {
394
+ "epoch": 2.4916454262248653,
395
+ "grad_norm": 1.0465933084487915,
396
+ "learning_rate": 3.4364261168384884e-05,
397
+ "loss": 0.4267,
398
+ "step": 2200
399
+ },
400
+ {
401
+ "epoch": 2.4916454262248653,
402
+ "eval_loss": 0.5909530520439148,
403
+ "eval_runtime": 143.9787,
404
+ "eval_samples_per_second": 10.897,
405
+ "eval_steps_per_second": 2.73,
406
+ "step": 2200
407
+ },
408
+ {
409
+ "epoch": 2.5482866043613708,
410
+ "grad_norm": 1.1270743608474731,
411
+ "learning_rate": 3.054600992745323e-05,
412
+ "loss": 0.4587,
413
+ "step": 2250
414
+ },
415
+ {
416
+ "epoch": 2.604927782497876,
417
+ "grad_norm": 1.0416178703308105,
418
+ "learning_rate": 2.6727758686521576e-05,
419
+ "loss": 0.4875,
420
+ "step": 2300
421
+ },
422
+ {
423
+ "epoch": 2.6615689606343813,
424
+ "grad_norm": 0.9418396353721619,
425
+ "learning_rate": 2.290950744558992e-05,
426
+ "loss": 0.4756,
427
+ "step": 2350
428
+ },
429
+ {
430
+ "epoch": 2.7182101387708864,
431
+ "grad_norm": 0.9481875896453857,
432
+ "learning_rate": 1.909125620465827e-05,
433
+ "loss": 0.4626,
434
+ "step": 2400
435
+ },
436
+ {
437
+ "epoch": 2.7182101387708864,
438
+ "eval_loss": 0.587207555770874,
439
+ "eval_runtime": 144.1702,
440
+ "eval_samples_per_second": 10.883,
441
+ "eval_steps_per_second": 2.726,
442
+ "step": 2400
443
+ },
444
+ {
445
+ "epoch": 2.774851316907392,
446
+ "grad_norm": 0.8298775553703308,
447
+ "learning_rate": 1.5273004963726615e-05,
448
+ "loss": 0.4396,
449
+ "step": 2450
450
+ },
451
+ {
452
+ "epoch": 2.831492495043897,
453
+ "grad_norm": 1.2271429300308228,
454
+ "learning_rate": 1.145475372279496e-05,
455
+ "loss": 0.4531,
456
+ "step": 2500
457
+ },
458
+ {
459
+ "epoch": 2.888133673180402,
460
+ "grad_norm": 1.2411454916000366,
461
+ "learning_rate": 7.636502481863307e-06,
462
+ "loss": 0.4647,
463
+ "step": 2550
464
+ },
465
+ {
466
+ "epoch": 2.9447748513169074,
467
+ "grad_norm": 1.449476718902588,
468
+ "learning_rate": 3.818251240931654e-06,
469
+ "loss": 0.4635,
470
+ "step": 2600
471
+ },
472
+ {
473
+ "epoch": 2.9447748513169074,
474
+ "eval_loss": 0.5865218639373779,
475
+ "eval_runtime": 143.9267,
476
+ "eval_samples_per_second": 10.901,
477
+ "eval_steps_per_second": 2.731,
478
+ "step": 2600
479
+ },
480
+ {
481
+ "epoch": 3.00113282356273,
482
+ "grad_norm": 0.9472671151161194,
483
+ "learning_rate": 0.0,
484
+ "loss": 0.3542,
485
+ "step": 2650
486
+ },
487
+ {
488
+ "epoch": 3.057774001699235,
489
+ "grad_norm": 1.101803183555603,
490
+ "learning_rate": 0.00011321736303040155,
491
+ "loss": 0.4194,
492
+ "step": 2700
493
+ },
494
+ {
495
+ "epoch": 3.1144151798357407,
496
+ "grad_norm": 1.1706457138061523,
497
+ "learning_rate": 0.00011159161112014307,
498
+ "loss": 0.4313,
499
+ "step": 2750
500
+ },
501
+ {
502
+ "epoch": 3.1710563579722457,
503
+ "grad_norm": 1.2929370403289795,
504
+ "learning_rate": 0.00010996585920988458,
505
+ "loss": 0.4418,
506
+ "step": 2800
507
+ },
508
+ {
509
+ "epoch": 3.1710563579722457,
510
+ "eval_loss": 0.60947585105896,
511
+ "eval_runtime": 153.6833,
512
+ "eval_samples_per_second": 10.209,
513
+ "eval_steps_per_second": 2.557,
514
+ "step": 2800
515
+ },
516
+ {
517
+ "epoch": 3.227697536108751,
518
+ "grad_norm": 1.3731728792190552,
519
+ "learning_rate": 0.00010834010729962609,
520
+ "loss": 0.4868,
521
+ "step": 2850
522
+ },
523
+ {
524
+ "epoch": 3.2843387142452563,
525
+ "grad_norm": 1.343711256980896,
526
+ "learning_rate": 0.00010671435538936759,
527
+ "loss": 0.4336,
528
+ "step": 2900
529
+ },
530
+ {
531
+ "epoch": 3.3409798923817613,
532
+ "grad_norm": 1.5197447538375854,
533
+ "learning_rate": 0.0001050886034791091,
534
+ "loss": 0.4789,
535
+ "step": 2950
536
+ },
537
+ {
538
+ "epoch": 3.397621070518267,
539
+ "grad_norm": 0.834096372127533,
540
+ "learning_rate": 0.00010346285156885061,
541
+ "loss": 0.4639,
542
+ "step": 3000
543
+ },
544
+ {
545
+ "epoch": 3.397621070518267,
546
+ "eval_loss": 0.6121659278869629,
547
+ "eval_runtime": 143.8631,
548
+ "eval_samples_per_second": 10.906,
549
+ "eval_steps_per_second": 2.732,
550
+ "step": 3000
551
+ },
552
+ {
553
+ "epoch": 3.454262248654772,
554
+ "grad_norm": 1.1350237131118774,
555
+ "learning_rate": 0.0001018370996585921,
556
+ "loss": 0.4591,
557
+ "step": 3050
558
+ },
559
+ {
560
+ "epoch": 3.5109034267912773,
561
+ "grad_norm": 1.269223928451538,
562
+ "learning_rate": 0.00010021134774833361,
563
+ "loss": 0.4679,
564
+ "step": 3100
565
+ },
566
+ {
567
+ "epoch": 3.5675446049277824,
568
+ "grad_norm": 1.1300125122070312,
569
+ "learning_rate": 9.858559583807512e-05,
570
+ "loss": 0.4619,
571
+ "step": 3150
572
+ },
573
+ {
574
+ "epoch": 3.624185783064288,
575
+ "grad_norm": 1.2352793216705322,
576
+ "learning_rate": 9.695984392781662e-05,
577
+ "loss": 0.48,
578
+ "step": 3200
579
+ },
580
+ {
581
+ "epoch": 3.624185783064288,
582
+ "eval_loss": 0.6045758724212646,
583
+ "eval_runtime": 144.0294,
584
+ "eval_samples_per_second": 10.894,
585
+ "eval_steps_per_second": 2.729,
586
+ "step": 3200
587
+ },
588
+ {
589
+ "epoch": 3.680826961200793,
590
+ "grad_norm": 1.3493255376815796,
591
+ "learning_rate": 9.533409201755813e-05,
592
+ "loss": 0.4838,
593
+ "step": 3250
594
+ },
595
+ {
596
+ "epoch": 3.7374681393372984,
597
+ "grad_norm": 1.3916635513305664,
598
+ "learning_rate": 9.370834010729963e-05,
599
+ "loss": 0.4899,
600
+ "step": 3300
601
+ },
602
+ {
603
+ "epoch": 3.7941093174738034,
604
+ "grad_norm": 1.4167906045913696,
605
+ "learning_rate": 9.208258819704113e-05,
606
+ "loss": 0.5017,
607
+ "step": 3350
608
+ },
609
+ {
610
+ "epoch": 3.850750495610309,
611
+ "grad_norm": 0.8912964463233948,
612
+ "learning_rate": 9.045683628678264e-05,
613
+ "loss": 0.4587,
614
+ "step": 3400
615
+ },
616
+ {
617
+ "epoch": 3.850750495610309,
618
+ "eval_loss": 0.5994317531585693,
619
+ "eval_runtime": 143.7834,
620
+ "eval_samples_per_second": 10.912,
621
+ "eval_steps_per_second": 2.733,
622
+ "step": 3400
623
+ },
624
+ {
625
+ "epoch": 3.907391673746814,
626
+ "grad_norm": 1.2601457834243774,
627
+ "learning_rate": 8.883108437652414e-05,
628
+ "loss": 0.4766,
629
+ "step": 3450
630
+ },
631
+ {
632
+ "epoch": 3.964032851883319,
633
+ "grad_norm": 1.1677194833755493,
634
+ "learning_rate": 8.720533246626565e-05,
635
+ "loss": 0.4616,
636
+ "step": 3500
637
+ },
638
+ {
639
+ "epoch": 4.020390824129142,
640
+ "grad_norm": 1.2599579095840454,
641
+ "learning_rate": 8.557958055600716e-05,
642
+ "loss": 0.4602,
643
+ "step": 3550
644
+ },
645
+ {
646
+ "epoch": 4.077032002265647,
647
+ "grad_norm": 0.9038525819778442,
648
+ "learning_rate": 8.395382864574867e-05,
649
+ "loss": 0.3565,
650
+ "step": 3600
651
+ },
652
+ {
653
+ "epoch": 4.077032002265647,
654
+ "eval_loss": 0.6232873797416687,
655
+ "eval_runtime": 143.721,
656
+ "eval_samples_per_second": 10.917,
657
+ "eval_steps_per_second": 2.734,
658
+ "step": 3600
659
+ },
660
+ {
661
+ "epoch": 4.133673180402153,
662
+ "grad_norm": 1.4113986492156982,
663
+ "learning_rate": 8.232807673549017e-05,
664
+ "loss": 0.4193,
665
+ "step": 3650
666
+ },
667
+ {
668
+ "epoch": 4.190314358538657,
669
+ "grad_norm": 1.1578692197799683,
670
+ "learning_rate": 8.070232482523168e-05,
671
+ "loss": 0.372,
672
+ "step": 3700
673
+ },
674
+ {
675
+ "epoch": 4.246955536675163,
676
+ "grad_norm": 1.4185764789581299,
677
+ "learning_rate": 7.907657291497318e-05,
678
+ "loss": 0.3647,
679
+ "step": 3750
680
+ },
681
+ {
682
+ "epoch": 4.303596714811668,
683
+ "grad_norm": 1.3464981317520142,
684
+ "learning_rate": 7.745082100471468e-05,
685
+ "loss": 0.3745,
686
+ "step": 3800
687
+ },
688
+ {
689
+ "epoch": 4.303596714811668,
690
+ "eval_loss": 0.6339591145515442,
691
+ "eval_runtime": 143.7966,
692
+ "eval_samples_per_second": 10.911,
693
+ "eval_steps_per_second": 2.733,
694
+ "step": 3800
695
+ },
696
+ {
697
+ "epoch": 4.360237892948174,
698
+ "grad_norm": 1.323198676109314,
699
+ "learning_rate": 7.582506909445619e-05,
700
+ "loss": 0.3839,
701
+ "step": 3850
702
+ },
703
+ {
704
+ "epoch": 4.416879071084678,
705
+ "grad_norm": 1.8854613304138184,
706
+ "learning_rate": 7.419931718419769e-05,
707
+ "loss": 0.4328,
708
+ "step": 3900
709
+ },
710
+ {
711
+ "epoch": 4.473520249221184,
712
+ "grad_norm": 0.9551966786384583,
713
+ "learning_rate": 7.25735652739392e-05,
714
+ "loss": 0.3816,
715
+ "step": 3950
716
+ },
717
+ {
718
+ "epoch": 4.530161427357689,
719
+ "grad_norm": 1.1180638074874878,
720
+ "learning_rate": 7.09478133636807e-05,
721
+ "loss": 0.4019,
722
+ "step": 4000
723
+ },
724
+ {
725
+ "epoch": 4.530161427357689,
726
+ "eval_loss": 0.629741907119751,
727
+ "eval_runtime": 144.0805,
728
+ "eval_samples_per_second": 10.89,
729
+ "eval_steps_per_second": 2.728,
730
+ "step": 4000
731
+ },
732
+ {
733
+ "epoch": 4.586802605494194,
734
+ "grad_norm": 1.5229169130325317,
735
+ "learning_rate": 6.932206145342221e-05,
736
+ "loss": 0.3794,
737
+ "step": 4050
738
+ },
739
+ {
740
+ "epoch": 4.643443783630699,
741
+ "grad_norm": 1.1407935619354248,
742
+ "learning_rate": 6.769630954316372e-05,
743
+ "loss": 0.3911,
744
+ "step": 4100
745
+ },
746
+ {
747
+ "epoch": 4.700084961767205,
748
+ "grad_norm": 1.4342515468597412,
749
+ "learning_rate": 6.607055763290522e-05,
750
+ "loss": 0.3757,
751
+ "step": 4150
752
+ },
753
+ {
754
+ "epoch": 4.75672613990371,
755
+ "grad_norm": 1.471047282218933,
756
+ "learning_rate": 6.444480572264673e-05,
757
+ "loss": 0.4043,
758
+ "step": 4200
759
+ },
760
+ {
761
+ "epoch": 4.75672613990371,
762
+ "eval_loss": 0.6323012709617615,
763
+ "eval_runtime": 143.8107,
764
+ "eval_samples_per_second": 10.91,
765
+ "eval_steps_per_second": 2.733,
766
+ "step": 4200
767
+ },
768
+ {
769
+ "epoch": 4.813367318040215,
770
+ "grad_norm": 1.6963218450546265,
771
+ "learning_rate": 6.281905381238823e-05,
772
+ "loss": 0.3817,
773
+ "step": 4250
774
+ },
775
+ {
776
+ "epoch": 4.8700084961767205,
777
+ "grad_norm": 1.4788011312484741,
778
+ "learning_rate": 6.119330190212974e-05,
779
+ "loss": 0.3879,
780
+ "step": 4300
781
+ },
782
+ {
783
+ "epoch": 4.926649674313226,
784
+ "grad_norm": 1.5147647857666016,
785
+ "learning_rate": 5.956754999187124e-05,
786
+ "loss": 0.3874,
787
+ "step": 4350
788
+ },
789
+ {
790
+ "epoch": 4.983290852449731,
791
+ "grad_norm": 1.027481198310852,
792
+ "learning_rate": 5.794179808161275e-05,
793
+ "loss": 0.3736,
794
+ "step": 4400
795
+ },
796
+ {
797
+ "epoch": 4.983290852449731,
798
+ "eval_loss": 0.6303974390029907,
799
+ "eval_runtime": 143.9543,
800
+ "eval_samples_per_second": 10.899,
801
+ "eval_steps_per_second": 2.73,
802
+ "step": 4400
803
+ },
804
+ {
805
+ "epoch": 5.039648824695553,
806
+ "grad_norm": 1.2473069429397583,
807
+ "learning_rate": 5.631604617135425e-05,
808
+ "loss": 0.33,
809
+ "step": 4450
810
+ },
811
+ {
812
+ "epoch": 5.096290002832059,
813
+ "grad_norm": 1.439157485961914,
814
+ "learning_rate": 5.469029426109576e-05,
815
+ "loss": 0.3065,
816
+ "step": 4500
817
+ },
818
+ {
819
+ "epoch": 5.152931180968564,
820
+ "grad_norm": 1.172194480895996,
821
+ "learning_rate": 5.306454235083727e-05,
822
+ "loss": 0.3038,
823
+ "step": 4550
824
+ },
825
+ {
826
+ "epoch": 5.20957235910507,
827
+ "grad_norm": 2.9354825019836426,
828
+ "learning_rate": 5.1438790440578765e-05,
829
+ "loss": 0.2961,
830
+ "step": 4600
831
+ },
832
+ {
833
+ "epoch": 5.20957235910507,
834
+ "eval_loss": 0.6725755929946899,
835
+ "eval_runtime": 143.751,
836
+ "eval_samples_per_second": 10.915,
837
+ "eval_steps_per_second": 2.734,
838
+ "step": 4600
839
+ },
840
+ {
841
+ "epoch": 5.266213537241574,
842
+ "grad_norm": 1.7553826570510864,
843
+ "learning_rate": 4.981303853032028e-05,
844
+ "loss": 0.3055,
845
+ "step": 4650
846
+ },
847
+ {
848
+ "epoch": 5.32285471537808,
849
+ "grad_norm": 1.1259921789169312,
850
+ "learning_rate": 4.818728662006178e-05,
851
+ "loss": 0.3052,
852
+ "step": 4700
853
+ },
854
+ {
855
+ "epoch": 5.379495893514585,
856
+ "grad_norm": 1.2912168502807617,
857
+ "learning_rate": 4.656153470980329e-05,
858
+ "loss": 0.3168,
859
+ "step": 4750
860
+ },
861
+ {
862
+ "epoch": 5.43613707165109,
863
+ "grad_norm": 1.3614895343780518,
864
+ "learning_rate": 4.493578279954479e-05,
865
+ "loss": 0.3024,
866
+ "step": 4800
867
+ },
868
+ {
869
+ "epoch": 5.43613707165109,
870
+ "eval_loss": 0.6745353937149048,
871
+ "eval_runtime": 143.4345,
872
+ "eval_samples_per_second": 10.939,
873
+ "eval_steps_per_second": 2.74,
874
+ "step": 4800
875
+ },
876
+ {
877
+ "epoch": 5.492778249787595,
878
+ "grad_norm": 1.4940049648284912,
879
+ "learning_rate": 4.33100308892863e-05,
880
+ "loss": 0.3281,
881
+ "step": 4850
882
+ },
883
+ {
884
+ "epoch": 5.549419427924101,
885
+ "grad_norm": 1.3145006895065308,
886
+ "learning_rate": 4.16842789790278e-05,
887
+ "loss": 0.2955,
888
+ "step": 4900
889
+ },
890
+ {
891
+ "epoch": 5.606060606060606,
892
+ "grad_norm": 1.6090342998504639,
893
+ "learning_rate": 4.005852706876931e-05,
894
+ "loss": 0.3351,
895
+ "step": 4950
896
+ },
897
+ {
898
+ "epoch": 5.662701784197111,
899
+ "grad_norm": 1.2353523969650269,
900
+ "learning_rate": 3.843277515851081e-05,
901
+ "loss": 0.3146,
902
+ "step": 5000
903
+ },
904
+ {
905
+ "epoch": 5.662701784197111,
906
+ "eval_loss": 0.6648290753364563,
907
+ "eval_runtime": 143.6635,
908
+ "eval_samples_per_second": 10.921,
909
+ "eval_steps_per_second": 2.736,
910
+ "step": 5000
911
+ },
912
+ {
913
+ "epoch": 5.7193429623336165,
914
+ "grad_norm": 1.4121828079223633,
915
+ "learning_rate": 3.680702324825232e-05,
916
+ "loss": 0.3252,
917
+ "step": 5050
918
+ },
919
+ {
920
+ "epoch": 5.775984140470122,
921
+ "grad_norm": 1.6109447479248047,
922
+ "learning_rate": 3.518127133799383e-05,
923
+ "loss": 0.2894,
924
+ "step": 5100
925
+ },
926
+ {
927
+ "epoch": 5.8326253186066275,
928
+ "grad_norm": 1.2615262269973755,
929
+ "learning_rate": 3.355551942773533e-05,
930
+ "loss": 0.3233,
931
+ "step": 5150
932
+ },
933
+ {
934
+ "epoch": 5.889266496743132,
935
+ "grad_norm": 1.4789379835128784,
936
+ "learning_rate": 3.192976751747683e-05,
937
+ "loss": 0.3136,
938
+ "step": 5200
939
+ },
940
+ {
941
+ "epoch": 5.889266496743132,
942
+ "eval_loss": 0.6699800491333008,
943
+ "eval_runtime": 143.914,
944
+ "eval_samples_per_second": 10.902,
945
+ "eval_steps_per_second": 2.731,
946
+ "step": 5200
947
+ },
948
+ {
949
+ "epoch": 5.945907674879638,
950
+ "grad_norm": 1.5867825746536255,
951
+ "learning_rate": 3.0304015607218337e-05,
952
+ "loss": 0.3398,
953
+ "step": 5250
954
+ },
955
+ {
956
+ "epoch": 6.00226564712546,
957
+ "grad_norm": 1.981821060180664,
958
+ "learning_rate": 2.8678263696959846e-05,
959
+ "loss": 0.2998,
960
+ "step": 5300
961
+ },
962
+ {
963
+ "epoch": 6.058906825261966,
964
+ "grad_norm": 1.178331971168518,
965
+ "learning_rate": 2.705251178670135e-05,
966
+ "loss": 0.2447,
967
+ "step": 5350
968
+ },
969
+ {
970
+ "epoch": 6.11554800339847,
971
+ "grad_norm": 1.5027756690979004,
972
+ "learning_rate": 2.5426759876442856e-05,
973
+ "loss": 0.2448,
974
+ "step": 5400
975
+ },
976
+ {
977
+ "epoch": 6.11554800339847,
978
+ "eval_loss": 0.7178024053573608,
979
+ "eval_runtime": 143.9568,
980
+ "eval_samples_per_second": 10.899,
981
+ "eval_steps_per_second": 2.73,
982
+ "step": 5400
983
+ },
984
+ {
985
+ "epoch": 6.172189181534976,
986
+ "grad_norm": 1.1384133100509644,
987
+ "learning_rate": 2.380100796618436e-05,
988
+ "loss": 0.2616,
989
+ "step": 5450
990
+ },
991
+ {
992
+ "epoch": 6.228830359671481,
993
+ "grad_norm": 1.4748141765594482,
994
+ "learning_rate": 2.2175256055925866e-05,
995
+ "loss": 0.2325,
996
+ "step": 5500
997
+ },
998
+ {
999
+ "epoch": 6.285471537807986,
1000
+ "grad_norm": 1.6163220405578613,
1001
+ "learning_rate": 2.054950414566737e-05,
1002
+ "loss": 0.2493,
1003
+ "step": 5550
1004
+ },
1005
+ {
1006
+ "epoch": 6.342112715944491,
1007
+ "grad_norm": 1.3263028860092163,
1008
+ "learning_rate": 1.892375223540888e-05,
1009
+ "loss": 0.2615,
1010
+ "step": 5600
1011
+ },
1012
+ {
1013
+ "epoch": 6.342112715944491,
1014
+ "eval_loss": 0.726570725440979,
1015
+ "eval_runtime": 143.4083,
1016
+ "eval_samples_per_second": 10.941,
1017
+ "eval_steps_per_second": 2.74,
1018
+ "step": 5600
1019
+ },
1020
+ {
1021
+ "epoch": 6.398753894080997,
1022
+ "grad_norm": 1.046238660812378,
1023
+ "learning_rate": 1.729800032515038e-05,
1024
+ "loss": 0.2335,
1025
+ "step": 5650
1026
+ },
1027
+ {
1028
+ "epoch": 6.455395072217502,
1029
+ "grad_norm": 1.156273603439331,
1030
+ "learning_rate": 1.567224841489189e-05,
1031
+ "loss": 0.2402,
1032
+ "step": 5700
1033
+ },
1034
+ {
1035
+ "epoch": 6.512036250354007,
1036
+ "grad_norm": 1.6315362453460693,
1037
+ "learning_rate": 1.4046496504633394e-05,
1038
+ "loss": 0.2584,
1039
+ "step": 5750
1040
+ },
1041
+ {
1042
+ "epoch": 6.5686774284905125,
1043
+ "grad_norm": 1.2109113931655884,
1044
+ "learning_rate": 1.24207445943749e-05,
1045
+ "loss": 0.2446,
1046
+ "step": 5800
1047
+ },
1048
+ {
1049
+ "epoch": 6.5686774284905125,
1050
+ "eval_loss": 0.731035590171814,
1051
+ "eval_runtime": 144.0173,
1052
+ "eval_samples_per_second": 10.895,
1053
+ "eval_steps_per_second": 2.729,
1054
+ "step": 5800
1055
+ },
1056
+ {
1057
+ "epoch": 6.625318606627018,
1058
+ "grad_norm": 1.3548364639282227,
1059
+ "learning_rate": 1.0794992684116404e-05,
1060
+ "loss": 0.2511,
1061
+ "step": 5850
1062
+ },
1063
+ {
1064
+ "epoch": 6.681959784763523,
1065
+ "grad_norm": 1.3163737058639526,
1066
+ "learning_rate": 9.16924077385791e-06,
1067
+ "loss": 0.2351,
1068
+ "step": 5900
1069
+ },
1070
+ {
1071
+ "epoch": 6.738600962900028,
1072
+ "grad_norm": 1.1973426342010498,
1073
+ "learning_rate": 7.543488863599415e-06,
1074
+ "loss": 0.2399,
1075
+ "step": 5950
1076
+ },
1077
+ {
1078
+ "epoch": 6.795242141036534,
1079
+ "grad_norm": 1.3192789554595947,
1080
+ "learning_rate": 5.91773695334092e-06,
1081
+ "loss": 0.2559,
1082
+ "step": 6000
1083
+ },
1084
+ {
1085
+ "epoch": 6.795242141036534,
1086
+ "eval_loss": 0.7207013368606567,
1087
+ "eval_runtime": 143.7446,
1088
+ "eval_samples_per_second": 10.915,
1089
+ "eval_steps_per_second": 2.734,
1090
+ "step": 6000
1091
+ },
1092
+ {
1093
+ "epoch": 6.851883319173039,
1094
+ "grad_norm": 1.284158706665039,
1095
+ "learning_rate": 4.291985043082425e-06,
1096
+ "loss": 0.2312,
1097
+ "step": 6050
1098
+ },
1099
+ {
1100
+ "epoch": 6.908524497309544,
1101
+ "grad_norm": 1.0552254915237427,
1102
+ "learning_rate": 2.6662331328239313e-06,
1103
+ "loss": 0.2505,
1104
+ "step": 6100
1105
+ },
1106
+ {
1107
+ "epoch": 6.965165675446049,
1108
+ "grad_norm": 1.2282088994979858,
1109
+ "learning_rate": 1.0404812225654365e-06,
1110
+ "loss": 0.252,
1111
+ "step": 6150
1112
+ }
1113
+ ],
1114
+ "logging_steps": 50,
1115
+ "max_steps": 6181,
1116
+ "num_input_tokens_seen": 0,
1117
+ "num_train_epochs": 7,
1118
+ "save_steps": 200,
1119
+ "stateful_callbacks": {
1120
+ "TrainerControl": {
1121
+ "args": {
1122
+ "should_epoch_stop": false,
1123
+ "should_evaluate": false,
1124
+ "should_log": false,
1125
+ "should_save": true,
1126
+ "should_training_stop": true
1127
+ },
1128
+ "attributes": {}
1129
+ }
1130
+ },
1131
+ "total_flos": 2.0813416244964864e+17,
1132
+ "train_batch_size": 4,
1133
+ "trial_name": null,
1134
+ "trial_params": null
1135
+ }
checkpoint-6181/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:24dbce934bdef4e393ace30f47e87259f49a5fb82c9b1cf4c325f7d12c72c1cf
3
+ size 5688
special_tokens_map.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "boi_token": "<start_of_image>",
3
+ "bos_token": {
4
+ "content": "<bos>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false
9
+ },
10
+ "eoi_token": "<end_of_image>",
11
+ "eos_token": {
12
+ "content": "<end_of_turn>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false
17
+ },
18
+ "image_token": "<image_soft_token>",
19
+ "pad_token": {
20
+ "content": "<pad>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false
25
+ },
26
+ "unk_token": {
27
+ "content": "<unk>",
28
+ "lstrip": false,
29
+ "normalized": false,
30
+ "rstrip": false,
31
+ "single_word": false
32
+ }
33
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4667f2089529e8e7657cfb6d1c19910ae71ff5f28aa7ab2ff2763330affad795
3
+ size 33384568
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1299c11d7cf632ef3b4e11937501358ada021bbdf7c47638d13c0ee982f2e79c
3
+ size 4689074
tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff