"""
    SORT: A Simple, Online and Realtime Tracker
    Copyright (C) 2016 Alex Bewley alex@dynamicdetection.com
    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.
    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.
    You should have received a copy of the GNU General Public License
    along with this program.  If not, see .
"""
from __future__ import print_function
from numba import jit
import os.path
import numpy as np
##import matplotlib.pyplot as plt
##import matplotlib.patches as patches
from skimage import io
# from scipy.optimize import linear_sum_assignment as linear_assignment
import glob
import time
import argparse
from filterpy.kalman import KalmanFilter
# -------- Fixes the Warning ----------------------
# def linear_assignment(cost_matrix):
#   try:
#     import lap
#     _, x, y = lap.lapjv(cost_matrix, extend_cost=True)
#     return np.array([[y[i], i] for i in x if i >= 0])
#   except ImportError:
#     from scipy.optimize import linear_sum_assignment
#     x, y = linear_sum_assignment(cost_matrix)
#     return np.array(list(zip(x, y)))
# --------------- Fixes the Error
from scipy.optimize import linear_sum_assignment
def linear_assignment(x):
  indices = linear_sum_assignment(x)
  indices = np.asarray(indices)
  return np.transpose(indices)
@jit
def iou(bb_test,bb_gt):
  """
  Computes IUO between two bboxes in the form [x1,y1,x2,y2]
  """
  xx1 = np.maximum(bb_test[0], bb_gt[0])
  yy1 = np.maximum(bb_test[1], bb_gt[1])
  xx2 = np.minimum(bb_test[2], bb_gt[2])
  yy2 = np.minimum(bb_test[3], bb_gt[3])
  w = np.maximum(0., xx2 - xx1)
  h = np.maximum(0., yy2 - yy1)
  wh = w * h
  o = wh / ((bb_test[2]-bb_test[0])*(bb_test[3]-bb_test[1])
    + (bb_gt[2]-bb_gt[0])*(bb_gt[3]-bb_gt[1]) - wh)
  return(o)
def convert_bbox_to_z(bbox):
  """
  Takes a bounding box in the form [x1,y1,x2,y2] and returns z in the form
    [x,y,s,r] where x,y is the centre of the box and s is the scale/area and r is
    the aspect ratio
  """
  w = bbox[2]-bbox[0]
  h = bbox[3]-bbox[1]
  x = bbox[0]+w/2.
  y = bbox[1]+h/2.
  s = w*h    #scale is just area
  r = w/float(h)
  return np.array([x,y,s,r]).reshape((4,1))
def convert_x_to_bbox(x,score=None):
  """
  Takes a bounding box in the centre form [x,y,s,r] and returns it in the form
    [x1,y1,x2,y2] where x1,y1 is the top left and x2,y2 is the bottom right
  """
  w = np.sqrt(x[2]*x[3])
  h = x[2]/w
  if(score==None):
    return np.array([x[0]-w/2.,x[1]-h/2.,x[0]+w/2.,x[1]+h/2.]).reshape((1,4))
  else:
    return np.array([x[0]-w/2.,x[1]-h/2.,x[0]+w/2.,x[1]+h/2.,score]).reshape((1,5))
class KalmanBoxTracker(object):
  """
  This class represents the internel state of individual tracked objects observed as bbox.
  """
  count = 0
  def __init__(self,bbox):
    """
    Initialises a tracker using initial bounding box.
    """
    #define constant velocity model
    self.kf = KalmanFilter(dim_x=7, dim_z=4)
    self.kf.F = np.array([[1,0,0,0,1,0,0],[0,1,0,0,0,1,0],[0,0,1,0,0,0,1],[0,0,0,1,0,0,0],  [0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]])
    self.kf.H = np.array([[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0]])
    self.kf.R[2:,2:] *= 10.
    self.kf.P[4:,4:] *= 1000. #give high uncertainty to the unobservable initial velocities
    self.kf.P *= 10.
    self.kf.Q[-1,-1] *= 0.01
    self.kf.Q[4:,4:] *= 0.01
    self.kf.x[:4] = convert_bbox_to_z(bbox)
    self.time_since_update = 0
    self.id = KalmanBoxTracker.count
    KalmanBoxTracker.count += 1
    self.history = []
    self.hits = 0
    self.hit_streak = 0
    self.age = 0
    self.objclass = bbox[6]
  def update(self,bbox):
    """
    Updates the state vector with observed bbox.
    """
    self.time_since_update = 0
    self.history = []
    self.hits += 1
    self.hit_streak += 1
    self.kf.update(convert_bbox_to_z(bbox))
  def predict(self):
    """
    Advances the state vector and returns the predicted bounding box estimate.
    """
    if((self.kf.x[6]+self.kf.x[2])<=0):
      self.kf.x[6] *= 0.0
    self.kf.predict()
    self.age += 1
    if(self.time_since_update>0):
      self.hit_streak = 0
    self.time_since_update += 1
    self.history.append(convert_x_to_bbox(self.kf.x))
    return self.history[-1]
  def get_state(self):
    """
    Returns the current bounding box estimate.
    """
    return convert_x_to_bbox(self.kf.x)
def associate_detections_to_trackers(detections,trackers,iou_threshold = 0.3):
  """
  Assigns detections to tracked object (both represented as bounding boxes)
  Returns 3 lists of matches, unmatched_detections and unmatched_trackers
  """
  if(len(trackers)==0):
    return np.empty((0,2),dtype=int), np.arange(len(detections)), np.empty((0,5),dtype=int)
  iou_matrix = np.zeros((len(detections),len(trackers)),dtype=np.float32)
  for d,det in enumerate(detections):
    for t,trk in enumerate(trackers):
      iou_matrix[d,t] = iou(det,trk)
  matched_indices = linear_assignment(-iou_matrix)
  unmatched_detections = []
  for d,det in enumerate(detections):
    if(d not in matched_indices[:,0]):
      unmatched_detections.append(d)
  unmatched_trackers = []
  for t,trk in enumerate(trackers):
    if(t not in matched_indices[:,1]):
      unmatched_trackers.append(t)
  #filter out matched with low IOU
  matches = []
  for m in matched_indices:
    if(iou_matrix[m[0],m[1]]= self.min_hits or self.frame_count <= self.min_hits)):
          ret.append(np.concatenate((d,[trk.id+1], [trk.objclass])).reshape(1,-1)) # +1 as MOT benchmark requires positive
        i -= 1
        #remove dead tracklet
        if(trk.time_since_update > self.max_age):
          self.trackers.pop(i)
    if(len(ret)>0):
      return np.concatenate(ret)
    return np.empty((0,5))
    
def parse_args():
    """Parse input arguments."""
    parser = argparse.ArgumentParser(description='SORT demo')
    parser.add_argument('--display', dest='display', help='Display online tracker output (slow) [False]',action='store_true')
    args = parser.parse_args()
    return args
if __name__ == '__main__':
  # all train
  sequences = ['PETS09-S2L1','TUD-Campus','TUD-Stadtmitte','ETH-Bahnhof','ETH-Sunnyday','ETH-Pedcross2','KITTI-13','KITTI-17','ADL-Rundle-6','ADL-Rundle-8','Venice-2']
  args = parse_args()
  display = args.display
  phase = 'train'
  total_time = 0.0
  total_frames = 0
  colours = np.random.rand(32,3) #used only for display
  if(display):
    if not os.path.exists('mot_benchmark'):
      print('\n\tERROR: mot_benchmark link not found!\n\n    Create a symbolic link to the MOT benchmark\n    (https://motchallenge.net/data/2D_MOT_2015/#download). E.g.:\n\n    $ ln -s /path/to/MOT2015_challenge/2DMOT2015 mot_benchmark\n\n')
      exit()
    plt.ion()
    fig = plt.figure() 
  
  if not os.path.exists('output'):
    os.makedirs('output')
  
  for seq in sequences:
    mot_tracker = Sort() #create instance of the SORT tracker
    seq_dets = np.loadtxt('data/%s/det.txt'%(seq),delimiter=',') #load detections
    with open('output/%s.txt'%(seq),'w') as out_file:
      print("Processing %s."%(seq))
      for frame in range(int(seq_dets[:,0].max())):
        frame += 1 #detection and frame numbers begin at 1
        dets = seq_dets[seq_dets[:,0]==frame,2:7]
        dets[:,2:4] += dets[:,0:2] #convert to [x1,y1,w,h] to [x1,y1,x2,y2]
        total_frames += 1
        if(display):
          ax1 = fig.add_subplot(111, aspect='equal')
          fn = 'mot_benchmark/%s/%s/img1/%06d.jpg'%(phase,seq,frame)
          im =io.imread(fn)
          ax1.imshow(im)
          plt.title(seq+' Tracked Targets')
        start_time = time.time()
        trackers = mot_tracker.update(dets)
        cycle_time = time.time() - start_time
        total_time += cycle_time
        for d in trackers:
          print('%d,%d,%.2f,%.2f,%.2f,%.2f,1,-1,-1,-1'%(frame,d[4],d[0],d[1],d[2]-d[0],d[3]-d[1]),file=out_file)
          if(display):
            d = d.astype(np.int32)
            ax1.add_patch(patches.Rectangle((d[0],d[1]),d[2]-d[0],d[3]-d[1],fill=False,lw=3,ec=colours[d[4]%32,:]))
            ax1.set_adjustable('box-forced')
        if(display):
          fig.canvas.flush_events()
          plt.draw()
          ax1.cla()
  print("Total Tracking took: %.3f for %d frames or %.1f FPS"%(total_time,total_frames,total_frames/total_time))
  if(display):
    print("Note: to get real runtime results run without the option: --display")