File size: 2,183 Bytes
d38ed12 0f50477 d38ed12 454be49 0f50477 d38ed12 454be49 0f50477 d38ed12 454be49 0f50477 d38ed12 454be49 0f50477 d38ed12 454be49 0f50477 d38ed12 454be49 0f50477 7308ea5 0f50477 7308ea5 d38ed12 0f50477 d38ed12 9cb992f d0416fc 9cb992f d38ed12 7308ea5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
---
task_categories:
- text-generation
configs:
- config_name: ir1xor1
data_files:
- split: train
path: data/ir1xor1/train*
- split: test
path: data/ir1xor1/test*
- config_name: ir1xor3
data_files:
- split: train
path: data/ir1xor3/train*
- split: test
path: data/ir1xor3/test*
- config_name: ir1xor4
data_files:
- split: train
path: data/ir1xor4/train*
- split: test
path: data/ir1xor4/test*
- config_name: ir2xor2
data_files:
- split: train
path: data/ir2xor2/train*
- split: test
path: data/ir2xor2/test*
- config_name: ir3xor2
data_files:
- split: train
path: data/ir3xor2/train*
- split: test
path: data/ir3xor2/test*
- config_name: ir4xor2
data_files:
- split: train
path: data/ir4xor2/train*
- split: test
path: data/ir4xor2/test*
- config_name: ir4xor2-deepseek
data_files:
- split: train
path: data/ir4xor2-deepseek/train*
- split: test
path: data/ir4xor2-deepseek/test*
dataset_info:
- config_name: default
features:
- name: input
dtype: string
- name: output
dtype: string
splits:
- name: train
- name: test
language:
- code
size_categories:
- 10K<n<100K
---
# RepairLLaMA - Datasets
Contains the processed fine-tuning datasets for RepairLLaMA.
## Instructions to explore the dataset
To load the dataset, you must define which revision (i.e., which input/output representation pair) you want to load.
```python
from datasets import load_dataset
# Load ir1xor1
dataset = load_dataset("ASSERT-KTH/repairllama-datasets", "ir1xor1")
# Load irXxorY
dataset = load_dataset("ASSERT-KTH/repairllama-datasets", "irXxorY")
```
## Citation
If you use RepairLLaMA in academic research, please cite "[RepairLLaMA: Efficient Representations and Fine-Tuned Adapters for Program Repair](http://arxiv.org/abs/2312.15698)", Technical report, arXiv 2312.15698, 2023.
```bibtex
@techreport{repairllama2023,
title={RepairLLaMA: Efficient Representations and Fine-Tuned Adapters for Program Repair},
author={Silva, Andr{\'e} and Fang, Sen and Monperrus, Martin},
url = {http://arxiv.org/abs/2312.15698},
number = {2312.15698},
institution = {arXiv},
}
```
|