File size: 7,289 Bytes
8460297
 
5771c9a
70dc2c2
8460297
eb3ed2b
8460297
 
 
 
eb3ed2b
 
 
 
 
 
 
 
9521a4c
eb3ed2b
 
 
 
748e590
eb3ed2b
70dc2c2
 
eb3ed2b
 
 
 
 
 
 
 
748e590
eb3ed2b
 
 
 
748e590
 
eb3ed2b
 
 
 
 
 
10e64d4
8460297
8abeac9
eb3ed2b
acbe967
70dc2c2
748e590
70dc2c2
 
 
 
 
 
748e590
 
 
eb3ed2b
 
748e590
 
eb3ed2b
 
 
748e590
 
 
 
 
d7643ae
 
eb3ed2b
 
748e590
 
 
eb3ed2b
748e590
8460297
 
 
 
 
 
eb3ed2b
 
 
 
8460297
 
 
 
748e590
8460297
eb3ed2b
 
70dc2c2
 
d7643ae
eb3ed2b
70dc2c2
 
 
 
 
 
 
eb3ed2b
70dc2c2
91777eb
 
eb3ed2b
 
70dc2c2
 
eb3ed2b
91777eb
70dc2c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
748e590
8abeac9
 
 
 
 
70dc2c2
 
8abeac9
70dc2c2
 
748e590
70dc2c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8abeac9
 
 
70dc2c2
 
 
 
8abeac9
70dc2c2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import datasets
import json
import os
import pandas as pd

_DESCRIPTION = "Permutation composition datasets with dynamic filtering by group degree, order, and sequence length."
_HOMEPAGE = "https://huggingface.co/datasets/BeeGass/permutation-groups"
_LICENSE = "MIT"

class PermutationGroupsConfig(datasets.BuilderConfig):
    def __init__(
        self, 
        group_type=None,
        min_degree=None,
        max_degree=None,
        min_order=None,
        max_order=None,
        min_len=3,
        max_len=1024,
        **kwargs
    ):
        """
        Configuration for loading permutation groups.
        
        Args:
            group_type: Type of group (symmetric, alternating, cyclic, dihedral, klein, 
                       quaternion, elementary_abelian, psl, frobenius, mathieu)
            min_degree: Minimum group degree to include
            max_degree: Maximum group degree to include
            min_order: Minimum group order to include
            max_order: Maximum group order to include
            min_len: Minimum sequence length
            max_len: Maximum sequence length
        """
        # Set name based on parameters
        if "name" not in kwargs:
            if group_type:
                kwargs["name"] = group_type
            else:
                kwargs["name"] = "all"
        
        super().__init__(**kwargs)
        self.group_type = group_type
        self.min_degree = min_degree
        self.max_degree = max_degree
        self.min_order = min_order
        self.max_order = max_order
        self.min_len = min_len
        self.max_len = max_len

class PermutationGroups(datasets.GeneratorBasedBuilder):
    """Permutation groups dataset with dynamic filtering."""
    
    VERSION = datasets.Version("5.0.0")
    
    # Define all available group types
    GROUP_TYPES = [
        "symmetric", "alternating", "cyclic", "dihedral", 
        "klein", "quaternion", "elementary_abelian", "psl", 
        "frobenius", "mathieu"
    ]
    
    BUILDER_CONFIGS = []
    
    # Add configs for each group type
    for group_type in GROUP_TYPES:
        BUILDER_CONFIGS.append(
            PermutationGroupsConfig(
                name=group_type,
                description=f"{group_type.capitalize()} permutation groups",
                group_type=group_type,
            )
        )
    
    # Add "all" configuration
    BUILDER_CONFIGS.append(
        PermutationGroupsConfig(
            name="all",
            description="All permutation groups",
            group_type=None,  # Will load all types
        )
    )
    
    DEFAULT_CONFIG_NAME = "symmetric"
    
    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features({
                "input_sequence": datasets.Value("string"),
                "target": datasets.Value("string"),
                "group_type": datasets.Value("string"),
                "group_degree": datasets.Value("int32"),
                "group_order": datasets.Value("int32"),
                "sequence_length": datasets.Value("int32"),
            }),
            homepage=_HOMEPAGE,
            license=_LICENSE,
        )
    
    def _split_generators(self, dl_manager):
        # Determine which datasets to load
        if self.config.group_type:
            # Load the superset for this group type
            datasets_to_load = [f"{self.config.group_type}_superset"]
        else:
            # Load all supersets
            datasets_to_load = [
                "symmetric_superset", "alternating_superset", 
                "cyclic_superset", "dihedral_superset",
                "klein_superset", "quaternion_superset",
                "elementary_abelian_superset", "psl_superset",
                "frobenius_superset", "mathieu_superset"
            ]
        
        # Build file URLs using wildcards
        train_urls = []
        test_urls = []
        
        for dataset_name in datasets_to_load:
            train_urls.append(f"data/{dataset_name}/train/data-*.arrow")
            test_urls.append(f"data/{dataset_name}/test/data-*.arrow")
        
        # Download files
        downloaded_files = dl_manager.download({
            "train": train_urls,
            "test": test_urls
        })
        
        # Flatten the lists of files
        train_files = []
        test_files = []
        
        for file_list in downloaded_files["train"]:
            if isinstance(file_list, list):
                train_files.extend(file_list)
            else:
                train_files.append(file_list)
                
        for file_list in downloaded_files["test"]:
            if isinstance(file_list, list):
                test_files.extend(file_list)
            else:
                test_files.append(file_list)
        
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "files": train_files,
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "files": test_files,
                },
            ),
        ]
    
    def _generate_examples(self, files):
        """Yield examples with filtering."""
        idx = 0
        
        for file_path in files:
            # Load the Arrow file
            table = datasets.table.read_table(file_path)
            
            # Convert to pandas for easier filtering
            df = table.to_pandas()
            
            # Apply filters
            mask = pd.Series([True] * len(df))
            
            # Filter by group type (if specified in config)
            if self.config.group_type:
                mask &= (df["group_type"] == self.config.group_type)
            
            # Filter by degree
            if self.config.min_degree is not None:
                mask &= (df["group_degree"] >= self.config.min_degree)
            if self.config.max_degree is not None:
                mask &= (df["group_degree"] <= self.config.max_degree)
            
            # Filter by order
            if self.config.min_order is not None:
                mask &= (df["group_order"] >= self.config.min_order)
            if self.config.max_order is not None:
                mask &= (df["group_order"] <= self.config.max_order)
            
            # Filter by sequence length
            if self.config.min_len is not None:
                mask &= (df["sequence_length"] >= self.config.min_len)
            if self.config.max_len is not None:
                mask &= (df["sequence_length"] <= self.config.max_len)
            
            # Apply mask
            filtered_df = df[mask]
            
            # Yield filtered examples
            for _, row in filtered_df.iterrows():
                yield idx, {
                    "input_sequence": row["input_sequence"],
                    "target": row["target"],
                    "group_type": row["group_type"],
                    "group_degree": int(row["group_degree"]),
                    "group_order": int(row["group_order"]),
                    "sequence_length": int(row["sequence_length"]),
                }
                idx += 1