import datasets import json import os import pandas as pd _DESCRIPTION = "Permutation composition datasets with dynamic filtering by group degree, order, and sequence length." _HOMEPAGE = "https://huggingface.co/datasets/BeeGass/permutation-groups" _LICENSE = "MIT" class PermutationGroupsConfig(datasets.BuilderConfig): def __init__( self, group_type=None, min_degree=None, max_degree=None, min_order=None, max_order=None, min_len=3, max_len=1024, **kwargs ): """ Configuration for loading permutation groups. Args: group_type: Type of group (symmetric, alternating, cyclic, dihedral, klein, quaternion, elementary_abelian, psl, frobenius, mathieu) min_degree: Minimum group degree to include max_degree: Maximum group degree to include min_order: Minimum group order to include max_order: Maximum group order to include min_len: Minimum sequence length max_len: Maximum sequence length """ # Set name based on parameters if "name" not in kwargs: if group_type: kwargs["name"] = group_type else: kwargs["name"] = "all" super().__init__(**kwargs) self.group_type = group_type self.min_degree = min_degree self.max_degree = max_degree self.min_order = min_order self.max_order = max_order self.min_len = min_len self.max_len = max_len class PermutationGroups(datasets.GeneratorBasedBuilder): """Permutation groups dataset with dynamic filtering.""" VERSION = datasets.Version("5.0.0") # Define all available group types GROUP_TYPES = [ "symmetric", "alternating", "cyclic", "dihedral", "klein", "quaternion", "elementary_abelian", "psl", "frobenius", "mathieu" ] BUILDER_CONFIGS = [] # Add configs for each group type for group_type in GROUP_TYPES: BUILDER_CONFIGS.append( PermutationGroupsConfig( name=group_type, description=f"{group_type.capitalize()} permutation groups", group_type=group_type, ) ) # Add "all" configuration BUILDER_CONFIGS.append( PermutationGroupsConfig( name="all", description="All permutation groups", group_type=None, # Will load all types ) ) DEFAULT_CONFIG_NAME = "symmetric" def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features({ "input_sequence": datasets.Value("string"), "target": datasets.Value("string"), "group_type": datasets.Value("string"), "group_degree": datasets.Value("int32"), "group_order": datasets.Value("int32"), "sequence_length": datasets.Value("int32"), }), homepage=_HOMEPAGE, license=_LICENSE, ) def _split_generators(self, dl_manager): # Determine which datasets to load if self.config.group_type: # Load the superset for this group type datasets_to_load = [f"{self.config.group_type}_superset"] else: # Load all supersets datasets_to_load = [ "symmetric_superset", "alternating_superset", "cyclic_superset", "dihedral_superset", "klein_superset", "quaternion_superset", "elementary_abelian_superset", "psl_superset", "frobenius_superset", "mathieu_superset" ] # Build file URLs using wildcards train_urls = [] test_urls = [] for dataset_name in datasets_to_load: train_urls.append(f"data/{dataset_name}/train/data-*.arrow") test_urls.append(f"data/{dataset_name}/test/data-*.arrow") # Download files downloaded_files = dl_manager.download({ "train": train_urls, "test": test_urls }) # Flatten the lists of files train_files = [] test_files = [] for file_list in downloaded_files["train"]: if isinstance(file_list, list): train_files.extend(file_list) else: train_files.append(file_list) for file_list in downloaded_files["test"]: if isinstance(file_list, list): test_files.extend(file_list) else: test_files.append(file_list) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "files": train_files, }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "files": test_files, }, ), ] def _generate_examples(self, files): """Yield examples with filtering.""" idx = 0 for file_path in files: # Load the Arrow file table = datasets.table.read_table(file_path) # Convert to pandas for easier filtering df = table.to_pandas() # Apply filters mask = pd.Series([True] * len(df)) # Filter by group type (if specified in config) if self.config.group_type: mask &= (df["group_type"] == self.config.group_type) # Filter by degree if self.config.min_degree is not None: mask &= (df["group_degree"] >= self.config.min_degree) if self.config.max_degree is not None: mask &= (df["group_degree"] <= self.config.max_degree) # Filter by order if self.config.min_order is not None: mask &= (df["group_order"] >= self.config.min_order) if self.config.max_order is not None: mask &= (df["group_order"] <= self.config.max_order) # Filter by sequence length if self.config.min_len is not None: mask &= (df["sequence_length"] >= self.config.min_len) if self.config.max_len is not None: mask &= (df["sequence_length"] <= self.config.max_len) # Apply mask filtered_df = df[mask] # Yield filtered examples for _, row in filtered_df.iterrows(): yield idx, { "input_sequence": row["input_sequence"], "target": row["target"], "group_type": row["group_type"], "group_degree": int(row["group_degree"]), "group_order": int(row["group_order"]), "sequence_length": int(row["sequence_length"]), } idx += 1