--- configs: - config_name: default data_files: - split: scene1 path: data/scene1-* - split: scene2 path: data/scene2-* - split: scene3 path: data/scene3-* - split: scene4 path: data/scene4-* - split: fall path: data/fall-* - split: refraction path: data/refraction-* - split: slope path: data/slope-* - split: spring path: data/spring-* dataset_info: features: - name: image dtype: image - name: render_path dtype: string - name: metavalue dtype: string splits: - name: scene1 num_examples: 11736 num_bytes: 19942310778.0 - name: scene2 num_examples: 11736 num_bytes: 17009899490.0 - name: scene3 num_examples: 11736 num_bytes: 22456754445.0 - name: scene4 num_examples: 3556 num_bytes: 22976022064.0 - name: fall num_examples: 40000 num_bytes: 10915924301.0 - name: refraction num_examples: 40000 num_bytes: 10709791288.0 - name: slope num_examples: 40000 num_bytes: 16693093236.0 - name: spring num_examples: 40000 num_bytes: 15431950241.0 download_size: 136135745843.0 dataset_size: 136135745843.0 license: apache-2.0 task_categories: - image-feature-extraction - object-detection - video-classification language: - en tags: - causal-representation-learning - simulation - robotics - traffic - physics - synthetic --- # CausalVerse Image Dataset This dataset contains **two families of splits**: - **Physics splits**: `Fall`, `Refraction`, `Slope`, `Spring` - **Static image generation**: `scene1`, `scene2`, `scene3`, `scene4` All splits share the same columns: - `image` (binary image; `datasets.Image`) - `render_path` (string; original image filename/path) - `metavalue` (string; per-sample metadata; schema varies by split) **Paper:** [CausalVerse: Benchmarking Causal Representation Learning with Configurable High-Fidelity Simulations](https://huggingface.co/papers/2510.14049) **Project page:** [https://causal-verse.github.io/](https://causal-verse.github.io/) **Code:** [https://github.com/CausalVerse/CausalVerseBenchmark](https://github.com/CausalVerse/CausalVerseBenchmark) ## Overview

CausalVerse Overview Figure **CausalVerse** is a comprehensive benchmark for **Causal Representation Learning (CRL)** focused on *recovering the data-generating process*. It couples **high-fidelity, controllable simulations** with **accessible and configurable ground-truth causal mechanisms** (structure, variables, interventions, temporal dependencies), bridging the gap between **realism** and **evaluation rigor**. The benchmark spans **24 sub-scenes** across **four domains**: - 🖼️ Static image generation - 🧪 Dynamic physical simulation - 🤖 Robotic manipulation - 🚦 Traffic scene analysis Scenarios range from **static to temporal**, **single to multi-agent**, and **simple to complex** structures, enabling principled stress-tests of CRL assumptions. We also include reproducible baselines to help practitioners align **assumptions ↔ data ↔ methods** and deploy CRL effectively. ## Dataset at a Glance

CausalVerse Overview Figure CausalVerse data info Figure

- **Scale & Coverage**: ≈ **200k** high-res images, ≈ **140k** videos, **>300M** frames across **24 scenes** in **4 domains** - Image generation (4), Physical simulation (10; aggregated & dynamic), Robotic manipulation (5), Traffic (5) - **Resolution & Duration**: typical **1024×1024** / **1920×1080**; clips **3–32 s**; diverse frame rates - **Causal Variables**: **3–100+** per scene, including **categorical** (e.g., object/material types) and **continuous** (e.g., velocity, mass, positions). Temporal scenes combine **global invariants** (e.g., mass) with **time-evolving variables** (e.g., pose, momentum). ## Sizes (from repository files) - `scene1`: 11,736 examples — ~19.94 GB - `scene2`: 11,736 examples — ~17.01 GB - `scene3`: 11,736 examples — ~22.46 GB - `scene4`: 3,556 examples — ~22.98 GB - `fall`: 40,000 examples — ~10.92 GB - `refraction`: 40,000 examples — ~10.71 GB - `slope`: 40,000 examples — ~16.69 GB - `spring`: 40,000 examples — ~15.43 GB > Notes: > - `metavalue` is **split-specific** (e.g., `fall` uses keys like `id,h1,r,u,h2,view`, while `scene*` have attributes like `domain,age,gender,...`). > - If you only need a portion, consider slicing (e.g., `split="fall[:1000]"`) or streaming to reduce local footprint. ## Sample Usage ### Loading with `datasets` library ```python from datasets import load_dataset # Physics split ds_fall = load_dataset("CausalVerse/CausalVerse_Image", split="fall") # Scene split ds_s1 = load_dataset("CausalVerse/CausalVerse_Image", split="scene1") ``` ### Using the Image Dataset (PyTorch-ready) We provide a **reference PyTorch dataset/loader** that works with exported splits. * Core class: `dataset/dataset_multisplit.py` → `MultiSplitImageCSVDataset` * Builder: `build_dataloader(...)` * Minimal example: `dataset/quickstart.py` **Conventions** * Each split folder contains `.csv` + `.png` files * CSV must include **`render_path`** (relative to the repository root or chosen data root) * All remaining CSV columns are treated as **metadata** and packed into a float tensor `meta` **Quick example** ```python from dataset.dataset_multisplit import build_dataloader # Optional torchvision transforms: # import torchvision.transforms as T # tfm = T.Compose([T.Resize((256, 256)), T.ToTensor()]) loader, ds = build_dataloader( root="/path/to/causalverse", split="SCENE1", batch_size=16, shuffle=True, num_workers=4, pad_images=True, # zero-pads within a batch if resolutions differ # image_transform=tfm, # check_files=True, ) for images, meta in loader: # images: FloatTensor [B, C, H, W] in [0, 1] # meta : FloatTensor [B, D] with ordered metadata (including 'view' if present) ... ``` > **`view` column semantics**: > • Physical splits (e.g., FALL/REFRACTION/SLOPE/SPRING): **camera viewpoint** > • Human rendering splits (SCENE1–SCENE4): **indoor background type** ## Installation ```bash # 1) Clone git clone https://github.com/CausalVerse/CausalVerseBenchmark.git cd CausalVerseBenchmark # 2) Core environment python3 --version # >= 3.9 recommended pip install -U torch datasets huggingface_hub pillow tqdm # 3) Optional: examples / loaders / transforms pip install torchvision scikit-learn rich ``` ## Download & Convert (Image subset) Fetch the **image** portion from Hugging Face and export to a simple on-disk layout (PNG files + per-split CSVs). **Quick start (recommended)** ```bash chmod +x dataset/run_export.sh ./dataset/run_export.sh ``` This will: * download parquet shards (skip if local), * export images to `image//*.png`, * write `.csv` next to each split with metadata columns + a `render_path` column. **Output layout** ``` image/ FALL/ FALL.csv 000001.png ... SCENE1/ SCENE1.csv char_001.png ... ```
Custom CLI usage ```bash python dataset/export_causalverse_image.py \ --repo-id CausalVerse/CausalVerse_Image \ --hf-home ./.hf \ --raw-repo-dir ./CausalVerse_Image \ --image-root ./image \ --folder-case upper \ --no-overwrite \ --include-render-path-column \ --download-allow-patterns data/*.parquet \ --skip-download-if-local # Export specific splits (case-insensitive) python dataset/export_causalverse_image.py --splits FALL SCENE1 ```
## Evaluation (Image Part) We release four reproducible baselines (shared backbone & similar training loop for fair comparison): * `CRL_SC` — Sufficient Change * `CRL_SF` — Mechanism Sparsity * `CRL_SP` — Multi-view * `SUP` — Supervised upper bound **How to run** ```bash # From repo root, run each baseline: cd evaluation/image_part/CRL_SC && python main.py cd ../CRL_SF && python main.py cd ../CRL_SP && python main.py cd ../SUP && python main.py # Example: pass data root via env or args # DATA_ROOT=/path/to/causalverse python main.py ``` **Full comparison (MCC / R²)** | Algorithm | Ball on the Slope
MCC / R² | Cylinder Spring
MCC / R² | Light Refraction
MCC / R² | Avg
MCC / R² | |---|---:|---:|---:|---:| | **Supervised** | 0.9878 / 0.9962 | 0.9970 / 0.9910 | 0.9900 / 0.9800 | **0.9916 / 0.9891** | | **Sufficient Change** | 0.4434 / 0.9630 | 0.6092 / 0.9344 | 0.6778 / 0.8420 | 0.5768 / 0.9131 | | **Mechanism Sparsity** | 0.2491 / 0.3242 | 0.3353 / 0.2340 | 0.1836 / 0.4067 | 0.2560 / 0.3216 | | **Multiview** | 0.4109 / 0.9658 | 0.4523 / 0.7841 | 0.3363 / 0.7841 | 0.3998 / 0.8447 | | **Contrastive Learning** | 0.2853 / 0.9604 | 0.6342 / 0.9920 | 0.3773 / 0.9677 | 0.4323 / 0.9734 | > Ablations can be reproduced by editing each method’s `main.py` or adding configs (e.g., split selection, loss weights, target subsets). ## Acknowledgements We thank the open-source community and the simulation/rendering ecosystem. We also appreciate contributors who help improve CausalVerse through issues and pull requests. ## Citation If CausalVerse helps your research, please cite: ```bibtex @inproceedings{causalverse2025, title = {CausalVerse: Benchmarking Causal Representation Learning with Configurable High-Fidelity Simulations}, author = {Guangyi Chen and Yunlong Deng and Peiyuan Zhu and Yan Li and Yifan Shen and Zijian Li and Kun Zhang}, booktitle = {NeurIPS}, year = {2025}, note = {Spotlight}, url = {https://huggingface.co/CausalVerse} } ```