---
configs:
- config_name: default
data_files:
- split: scene1
path: data/scene1-*
- split: scene2
path: data/scene2-*
- split: scene3
path: data/scene3-*
- split: scene4
path: data/scene4-*
- split: fall
path: data/fall-*
- split: refraction
path: data/refraction-*
- split: slope
path: data/slope-*
- split: spring
path: data/spring-*
dataset_info:
features:
- name: image
dtype: image
- name: render_path
dtype: string
- name: metavalue
dtype: string
splits:
- name: scene1
num_examples: 11736
num_bytes: 19942310778.0
- name: scene2
num_examples: 11736
num_bytes: 17009899490.0
- name: scene3
num_examples: 11736
num_bytes: 22456754445.0
- name: scene4
num_examples: 3556
num_bytes: 22976022064.0
- name: fall
num_examples: 40000
num_bytes: 10915924301.0
- name: refraction
num_examples: 40000
num_bytes: 10709791288.0
- name: slope
num_examples: 40000
num_bytes: 16693093236.0
- name: spring
num_examples: 40000
num_bytes: 15431950241.0
download_size: 136135745843.0
dataset_size: 136135745843.0
license: apache-2.0
task_categories:
- image-feature-extraction
- object-detection
- video-classification
language:
- en
tags:
- causal-representation-learning
- simulation
- robotics
- traffic
- physics
- synthetic
---
# CausalVerse Image Dataset
This dataset contains **two families of splits**:
- **Physics splits**: `Fall`, `Refraction`, `Slope`, `Spring`
- **Static image generation**: `scene1`, `scene2`, `scene3`, `scene4`
All splits share the same columns:
- `image` (binary image; `datasets.Image`)
- `render_path` (string; original image filename/path)
- `metavalue` (string; per-sample metadata; schema varies by split)
**Paper:** [CausalVerse: Benchmarking Causal Representation Learning with Configurable High-Fidelity Simulations](https://huggingface.co/papers/2510.14049)
**Project page:** [https://causal-verse.github.io/](https://causal-verse.github.io/)
**Code:** [https://github.com/CausalVerse/CausalVerseBenchmark](https://github.com/CausalVerse/CausalVerseBenchmark)
## Overview
**CausalVerse** is a comprehensive benchmark for **Causal Representation Learning (CRL)** focused on *recovering the data-generating process*. It couples **high-fidelity, controllable simulations** with **accessible and configurable ground-truth causal mechanisms** (structure, variables, interventions, temporal dependencies), bridging the gap between **realism** and **evaluation rigor**.
The benchmark spans **24 sub-scenes** across **four domains**:
- 🖼️ Static image generation
- 🧪 Dynamic physical simulation
- 🤖 Robotic manipulation
- 🚦 Traffic scene analysis
Scenarios range from **static to temporal**, **single to multi-agent**, and **simple to complex** structures, enabling principled stress-tests of CRL assumptions. We also include reproducible baselines to help practitioners align **assumptions ↔ data ↔ methods** and deploy CRL effectively.
## Dataset at a Glance
- **Scale & Coverage**: ≈ **200k** high-res images, ≈ **140k** videos, **>300M** frames across **24 scenes** in **4 domains**
- Image generation (4), Physical simulation (10; aggregated & dynamic), Robotic manipulation (5), Traffic (5)
- **Resolution & Duration**: typical **1024×1024** / **1920×1080**; clips **3–32 s**; diverse frame rates
- **Causal Variables**: **3–100+** per scene, including **categorical** (e.g., object/material types) and **continuous** (e.g., velocity, mass, positions). Temporal scenes combine **global invariants** (e.g., mass) with **time-evolving variables** (e.g., pose, momentum).
## Sizes (from repository files)
- `scene1`: 11,736 examples — ~19.94 GB
- `scene2`: 11,736 examples — ~17.01 GB
- `scene3`: 11,736 examples — ~22.46 GB
- `scene4`: 3,556 examples — ~22.98 GB
- `fall`: 40,000 examples — ~10.92 GB
- `refraction`: 40,000 examples — ~10.71 GB
- `slope`: 40,000 examples — ~16.69 GB
- `spring`: 40,000 examples — ~15.43 GB
> Notes:
> - `metavalue` is **split-specific** (e.g., `fall` uses keys like `id,h1,r,u,h2,view`, while `scene*` have attributes like `domain,age,gender,...`).
> - If you only need a portion, consider slicing (e.g., `split="fall[:1000]"`) or streaming to reduce local footprint.
## Sample Usage
### Loading with `datasets` library
```python
from datasets import load_dataset
# Physics split
ds_fall = load_dataset("CausalVerse/CausalVerse_Image", split="fall")
# Scene split
ds_s1 = load_dataset("CausalVerse/CausalVerse_Image", split="scene1")
```
### Using the Image Dataset (PyTorch-ready)
We provide a **reference PyTorch dataset/loader** that works with exported splits.
* Core class: `dataset/dataset_multisplit.py` → `MultiSplitImageCSVDataset`
* Builder: `build_dataloader(...)`
* Minimal example: `dataset/quickstart.py`
**Conventions**
* Each split folder contains `.csv` + `.png` files
* CSV must include **`render_path`** (relative to the repository root or chosen data root)
* All remaining CSV columns are treated as **metadata** and packed into a float tensor `meta`
**Quick example**
```python
from dataset.dataset_multisplit import build_dataloader
# Optional torchvision transforms:
# import torchvision.transforms as T
# tfm = T.Compose([T.Resize((256, 256)), T.ToTensor()])
loader, ds = build_dataloader(
root="/path/to/causalverse",
split="SCENE1",
batch_size=16,
shuffle=True,
num_workers=4,
pad_images=True, # zero-pads within a batch if resolutions differ
# image_transform=tfm,
# check_files=True,
)
for images, meta in loader:
# images: FloatTensor [B, C, H, W] in [0, 1]
# meta : FloatTensor [B, D] with ordered metadata (including 'view' if present)
...
```
> **`view` column semantics**:
> • Physical splits (e.g., FALL/REFRACTION/SLOPE/SPRING): **camera viewpoint**
> • Human rendering splits (SCENE1–SCENE4): **indoor background type**
## Installation
```bash
# 1) Clone
git clone https://github.com/CausalVerse/CausalVerseBenchmark.git
cd CausalVerseBenchmark
# 2) Core environment
python3 --version # >= 3.9 recommended
pip install -U torch datasets huggingface_hub pillow tqdm
# 3) Optional: examples / loaders / transforms
pip install torchvision scikit-learn rich
```
## Download & Convert (Image subset)
Fetch the **image** portion from Hugging Face and export to a simple on-disk layout (PNG files + per-split CSVs).
**Quick start (recommended)**
```bash
chmod +x dataset/run_export.sh
./dataset/run_export.sh
```
This will:
* download parquet shards (skip if local),
* export images to `image//*.png`,
* write `.csv` next to each split with metadata columns + a `render_path` column.
**Output layout**
```
image/
FALL/
FALL.csv
000001.png
...
SCENE1/
SCENE1.csv
char_001.png
...
```
Custom CLI usage
```bash
python dataset/export_causalverse_image.py \
--repo-id CausalVerse/CausalVerse_Image \
--hf-home ./.hf \
--raw-repo-dir ./CausalVerse_Image \
--image-root ./image \
--folder-case upper \
--no-overwrite \
--include-render-path-column \
--download-allow-patterns data/*.parquet \
--skip-download-if-local
# Export specific splits (case-insensitive)
python dataset/export_causalverse_image.py --splits FALL SCENE1
```
## Evaluation (Image Part)
We release four reproducible baselines (shared backbone & similar training loop for fair comparison):
* `CRL_SC` — Sufficient Change
* `CRL_SF` — Mechanism Sparsity
* `CRL_SP` — Multi-view
* `SUP` — Supervised upper bound
**How to run**
```bash
# From repo root, run each baseline:
cd evaluation/image_part/CRL_SC && python main.py
cd ../CRL_SF && python main.py
cd ../CRL_SP && python main.py
cd ../SUP && python main.py
# Example: pass data root via env or args
# DATA_ROOT=/path/to/causalverse python main.py
```
**Full comparison (MCC / R²)**
| Algorithm | Ball on the Slope
MCC / R² | Cylinder Spring
MCC / R² | Light Refraction
MCC / R² | Avg
MCC / R² |
|---|---:|---:|---:|---:|
| **Supervised** | 0.9878 / 0.9962 | 0.9970 / 0.9910 | 0.9900 / 0.9800 | **0.9916 / 0.9891** |
| **Sufficient Change** | 0.4434 / 0.9630 | 0.6092 / 0.9344 | 0.6778 / 0.8420 | 0.5768 / 0.9131 |
| **Mechanism Sparsity** | 0.2491 / 0.3242 | 0.3353 / 0.2340 | 0.1836 / 0.4067 | 0.2560 / 0.3216 |
| **Multiview** | 0.4109 / 0.9658 | 0.4523 / 0.7841 | 0.3363 / 0.7841 | 0.3998 / 0.8447 |
| **Contrastive Learning** | 0.2853 / 0.9604 | 0.6342 / 0.9920 | 0.3773 / 0.9677 | 0.4323 / 0.9734 |
> Ablations can be reproduced by editing each method’s `main.py` or adding configs (e.g., split selection, loss weights, target subsets).
## Acknowledgements
We thank the open-source community and the simulation/rendering ecosystem. We also appreciate contributors who help improve CausalVerse through issues and pull requests.
## Citation
If CausalVerse helps your research, please cite:
```bibtex
@inproceedings{causalverse2025,
title = {CausalVerse: Benchmarking Causal Representation Learning with Configurable High-Fidelity Simulations},
author = {Guangyi Chen and Yunlong Deng and Peiyuan Zhu and Yan Li and Yifan Shen and Zijian Li and Kun Zhang},
booktitle = {NeurIPS},
year = {2025},
note = {Spotlight},
url = {https://huggingface.co/CausalVerse}
}
```