


Procedural Content Generation 
for Unity Game Development

Harness the power of procedural content generation to 
design unique games with Unity

Ryan Watkins

BIRMINGHAM - MUMBAI



Procedural Content Generation for  
Unity Game Development

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval 
system, or transmitted in any form or by any means, without the prior written 
permission of the publisher, except in the case of brief quotations embedded in 
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy 
of the information presented. However, the information contained in this book is 
sold without warranty, either express or implied. Neither the author, nor Packt 
Publishing, and its dealers and distributors will be held liable for any damages 
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the 
companies and products mentioned in this book by the appropriate use of capitals. 
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: January 2016

Production reference: 1220116

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78528-747-3

www.packtpub.com

www.packtpub.com


Credits

Author
Ryan Watkins

Reviewers
Joshua Byrom

Michele Pirovano

Till Riemer

Gennaro Vessio

Acquisition Editor
Prachi Bisht

Content Development Editor
Merint Thomas Mathew

Technical Editor
Vivek Arora

Copy Editor
Merilyn Pereira

Project Coordinator
Francina Pinto

Proofreader
Safis Editing

Indexer
Rekha Nair

Graphics
Jason Monteiro

Production Coordinator
Manu Joseph

Cover Work
Manu Joseph



Disclaimer

The Unity name, logo, brand, and other trademarks or images featured or referred  
to within this book are licensed from and are the sole property of Unity Technologies. 
This book, its author, or the publisher are not affiliated with, endorsed by, or sponsored 
by Unity Technologies or any of its affiliates.



About the Author

Ryan Watkins was digitized and absorbed into his computer at an early age. In the 
digital realm, he learned the importance of video games and the balance they brought 
to the ecosystem of computing. Video games strive to always push the boundaries 
of what we know to be true while being a super-charged source of fun. Ryan formed 
friendships with many of the video games he encountered on his digital journeys, and 
in return, they shared the secrets of their creation with him. He has since returned to 
the physical world to share those secrets with the rest of us.



About the Reviewers

Joshua Byrom has been programming and gaming for over two decades, and 
has written numerous articles on the subjects of game programming and artificial 
intelligence. Around the age of eight, he was introduced to computers by his father, 
which generated in him a deep interest for computer science, particularly computer 
programming.

Since then, Joshua has written code for companies such as BMC Solutions Inc., 
AutoTrader.com, and Elite Property Services LLC. He has also worked for the 
army, where he wrote genetic algorithms for the U.S. Military. Currently, he works 
as a software architect, where he develops and maintains web applications for local 
lawyers, realtors, and retailers.

In addition, Joshua writes programming articles for online publishing, runs a small 
business that creates and publishes independent mobile and web applications, and 
provides code consulting for indie start-ups.

Currently, Joshua is located in Newnan, GA, and when he isn't lost thousands of 
lines deep in code, he likes to read both prose and poetry, or play video games.

Michele Pirovano is a freelance game developer and game researcher based in 
Bergamo, Italy. He holds a PhD in computer science from the Politecnico di Milano, 
where he graduated with a thesis on the design of autonomous exergaming systems.

His main interest is the application of artificial intelligence, procedural content 
generation, and complex mathematical systems to video games. He has written 
many articles on the use of computational intelligence in games, and continues to 
investigate both serious games and applied AI.

He is also the founder of the independent one-man game development studio 
Curiosity Killed the Cat. He is currently working on .Age, a rogue-lite village 
simulation game. He also loves cats.



Till Riemer is a game developer from Germany. He is currently living in 
Copenhagen, where he is working on the upcoming RPG Expeditions: Viking at 
indie developer Logic Artists.

As a teenager, Till started to get into programming and has always been fascinated 
with the prospects of adaptive AI in video games. He joined the games industry as 
a programmer on the acclaimed RPG Blackguards at Daedalic in 2013, and recently 
received an MSc in games technology from the IT University of Copenhagen, where 
he conducted his master's thesis about the creation of procedural side quests for  
role-playing games. Previously, he received a BSc in computer science.

In his free time, he works on a side project called Drakk Navis, a ship-racing game 
for tablets, but also loves to sit down with a guitar once in a while. He is also part of 
the team organizing events for the Copenhagen Indie scene and has represented the 
Danish Global Game Jam organizers at GDC in 2015. You can follow him on Twitter 
at @TillRiemer.

Gennaro Vessio received the Laurea Magistrale degree in informatics from  
the Department of Informatics at the University of Bari, Italy. Currently, he is  
a PhD student of the same department. His research is currently focused on the 
application of formal methods to the design and analysis of routing protocols  
for mobile ad hoc networks.

Concerning procedural content generation, he investigated, together with other 
colleagues, a grammar-based approach to the procedural generation of the 
environment of an endless game.



www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF 
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com 
and as a print book customer, you are entitled to a discount on the eBook copy. Get in 
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign 
up for a range of free newsletters and receive exclusive discounts and offers on Packt 
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital 
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access 
PacktLib today and view 9 entirely free books. Simply use your login credentials for 
immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com






For my two favorite girls, Keira and Aela Rose.





[ i ]

Table of Contents
Preface	 v
Chapter 1: Pseudo Random Numbers	 1

Introducing PCG	 2
Usage of PCG	 4
Application of PCG	 5
Pseudo random numbers	 6
Random versus pseudo random numbers	 7

PRNs in PCG	 8
Random Hello World	 9
Classic Hello World	 10
PCG Hello World	 15

Challenge	 17
Summary	 18

Chapter 2: Roguelike Games	 19
An introduction to Roguelike games	 20
Why Roguelike?	 21
Our own Roguelike project	 22
Setting up the project	 23

Importing the base project	 23
File overview	 24
Animation	 25

Fonts	 25
Prefabs	 25
Scenes	 25
Scripts	 26

Summary	 32



Table of Contents

[ ii ]

Chapter 3: Generating an Endless World	 33
Data structure choice	 34

Array	 35
Linked list	 36
Dictionary	 37

PCG algorithm overview	 39
Scene setup	 41

Player positioning	 42
Camera following	 43
Layers	 45

Initial Game Board	 47
Connecting code	 51
The PCG Game Board	 55

Summary	 60
Chapter 4: Generating Random Dungeons	 61

Algorithm design	 63
Algorithm overview	 63
The grid	 64
Essential path	 65
Random path and chambers	 66
Filling in the rest of the gird	 67
Placing the entrance and exit	 68
Algorithm summary	 69

Data structures	 70
Back to the map	 70
Queue	 71
Prefab setup	 72
An exit sign	 73

DungeonManager	 74
BoardManager	 83
Player	 86
GameManager	 88
Back to the Unity Editor	 90
Seeding the dungeon	 91
Challenge	 92
Summary	 92

Chapter 5: Randomized Items	 93
Generating health items in the game world	 94

Implementing health item generation	 94
Setting up sprites	 96



Table of Contents

[ iii ]

Generating items in the dungeon	 100
The Chest prefab	 100
Chest implementation	 103
Spawning the chest	 104
The Item prefab	 106
Item code	 107
Adding player to item interaction	 109

Summary	 114
Chapter 6: Generating Modular Weapons	 115

PCG with modules	 116
Statistics of modular PCG	 117
Creating and configuring new sprites	 118
Creating a multiple image prefab	 121

Modular weapon scripts	 122
Adding a spawn point	 127
Adding a weapon pick up	 128
Adding scripted weapon animation	 132
Adding character facing directions	 135
Summary	 138

Chapter 7: Adaptive Difficulty	 141
Setting up sprites	 142
Adding enemies to the world board	 147
Adding enemies to the Dungeon Board	 151
Fighting the enemy	 156
Adaptive difficulty	 159

Enemy AI	 162
Finishing up	 164

Summary	 167
Chapter 8: Generating Music	 169

Concept of music	 169
Tempo	 170
Melody	 171
Repetition	 172

Procedurally generated music algorithm	 173
Measure	 173
Dividing the measure	 174

The base line	 175
Setting up the script	 175
The Sound Manager script	 176

Adding tension	 187
Summary	 190



Table of Contents

[ iv ]

Chapter 9: Generating a 3D Planet	 191
Adding a third dimension	 192

3D vs 2D	 193
Know your geometry	 194
Working with the Unity primitive sphere	 194
Generating a sphere	 197
Adding randomization	 202
Bad time and space complexities	 203

Multi mesh planet	 205
Exploring the planet	 214
Summary	 216

Chapter 10: Generating the Future	 217
Models	 218
Items	 221
Levels	 222
Texture	 223
Terrain	 224
Physics	 225
Animation	 226
AI	 227
Story	 228
The player sandbox	 229
Summary	 230

Index	 231



[ v ]

Preface
This book is an introduction to Procedural Content Generation (PCG) and how it can 
be applied in the popular game engine, Unity3D. PCG is a powerful programming 
practice that is trending in modern video games. Though PCG is not a new practice, 
it has become even more powerful as technology has advanced and it looks to be a 
prominent component of future video games.

Throughout the course of this book, we will be learning the basis of procedural 
content generation, including theory and practice. You will start by learning what 
PCG is and what its uses are. You will then move into learning about pseudo 
random numbers and how they work with PCG to create unique gameplay.

After your introduction to PCG, you will dive in and build the core functionality of 
a 2D Roguelike game. This game will be heavily based on PCG practices so that you 
can experience what it takes to design and implement PCG algorithms. You will 
experience level generation, item generation, adaptive difficulty, music generation, 
and more. Lastly, we will move into 3D object generation by generating a 3D planet.

The aim of this book is to teach you about the theory of PCG while providing 
some simplified practical examples. By the end of the book, you should have a 
fundamental understanding of PCG and how it can be applied using Unity3D.  
This will all facilitate your further learning, research, and practice of PCG methods 
in video game development.



Preface

[ vi ]

What this book covers
Chapter 1, Pseudo Random Numbers, teaches you about the theory of procedural 
content generation (PCG). We will cover what PCG is and how it is used in video 
games. You will then learn about a useful component of randomization called 
Pseudo Random Numbers (PRN). We will cover what PRNs are, how they are  
used, and how they can help us implement PCG algorithms. 

Chapter 2, Roguelike Games, teaches you about a prime example of procedural content 
generation, Roguelike games. We will cover some history of the origin of PCG and 
Roguelike games. We will then set up the Unity project foundation of our very own 
Roguelike game.

Chapter 3, Generating an Endless World, begins the implementation of your 2D 
Roguelike game. We will be creating a level that generates itself at runtime while the 
player explores. We will cover PCG algorithm design and useful data substructures. 
Then, we will put it together to implement the game world.

Chapter 4, Generating Random Dungeons, implements the sublevels of our Roguelike 
game. We will cover a different approach to level generation as we generate a full 
level layout at runtime. You will learn about some common approaches to this 
technique and implement one for yourself.

Chapter 5, Randomized Items, teaches you about randomly generating items. The 
items you generate will have differing properties so we will use some techniques 
to communicate this to the player. We will cover item spawning, interaction, and 
inventory storage.

Chapter 6, Generating Modular Weapons, teaches you about and how to implement 
a random modular weapon system. You will build upon what you learned in the 
previous chapter to add more complexity to item generation. These items will 
comprise a small set of pieces that are assembled at runtime.

Chapter 7, Adaptive Difficulty, crosses over into the field of Artificial Intelligence (AI)
and teaches you about how AI and PCG are similar and related. You will learn  
about the PCG idea of adaptive difficulty, which is one part AI and one part PCG. 
You will then implement an adaptive difficulty system for your Roguelike game.

Chapter 8, Generating Music, shows you how PCG can even contribute to the music 
and sound content of a game. You will learn a little music theory; just enough to 
design a PCG algorithm for music generation. Then, you will implement a music 
generator for your Roguelike game that can generate music at runtime.



Preface

[ vii ]

Chapter 9, Generating a 3D Planet, switches gears from 2D-based PCG to 3D-based PCG. 
We will have finished our core 2D Roguelike functionality and be working on a new 
project. This chapter will introduce the fundamentals of 3D object generation. You will 
then implement a 3D planet generator. Plus, as a bonus, you will implement a first 
person controller to take a closer look at your generated world.

Chapter 10, Generating the Future, discusses the most common methods of PCG used 
today and some ways to further your learning in the subject. We will also summarize 
some of the key points of what you learned throughout the book and how they relate 
to these PCG methods. We will lastly take a look at some ways that we can improve 
these PCG methods for the future.

What you need for this book
This book uses the popular game engine Unity3D for all of its programming example 
implementations. At the time this book was written, Unity 5 was the current software 
version and all the code examples were written with Unity version 5.2.2. All of the 
code examples are written in the C# language.

You will need to download and install Unity3D onto your computer to follow the 
examples in this book. All that is required for this is Unity, as it will compile and 
run your code. It also comes with a code editor, MonoDevelop, which can be used to 
write your code. If you choose to use a different code editor, you may do so as well.

Who this book is for
This book was written with Unity development beginners in mind, but it is best 
suited for intermediate Unity developers. You will get the most out of this book if 
you are familiar with Unity development and the C# language. However, there is 
plenty of theory and programming method information that a beginning user can 
benefit from as well. Throughout the book, there are reference links and information 
tips that will guide an inexperienced user to additional information that will help 
facilitate their learning.

Conventions
In this book, you will find a number of styles of text that distinguish between 
different kinds of information. Here are some examples of these styles, and an 
explanation of their meaning.



Preface

[ viii ]

Code words in text, database table names, folder names, filenames, file extensions, 
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: 
"We can include other contexts through the use of the include directive."

A block of code is set as follows:

1 int integerVariable = 42;
2 
3 int interger function (int inInteger) {
4    return inInteger + 42;
5 } 

When we wish to draw your attention to a particular part of a code block, the relevant 
lines or items are set in bold:

1 int integerVariable = 42;
2 
3 int interger function (int inInteger) {
4     return inInteger + 42;
5 } 

New terms and important words are shown in bold. Words that you see on the 
screen, in menus or dialog boxes for example, appear in the text like this: "Click 
on the Add component button and add Box 2D Collider and Sprite Renderer 
components".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or may have disliked. Reader feedback is important for  
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, 
and mention the book title via the subject of your message.



Preface

[ ix ]

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to 
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased 
from your account at http://www.packtpub.com. If you purchased this book 
elsewhere, you can visit http://www.packtpub.com/support and register to  
have the files e-mailed directly to you.

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the 
changes in the output. You can download this file from https://www.packtpub.
com/sites/default/files/downloads/B04808_ColoredImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do 
happen. If you find a mistake in one of our books—maybe a mistake in the text or the 
code—we would be grateful if you would report this to us. By doing so, you can save 
other readers from frustration and help us improve subsequent versions of this book. 
If you find any errata, please report them by visiting http://www.packtpub.com/
submit-errata, selecting your book, clicking on the Errata Submission Form link, 
and entering the details of your errata. Once your errata are verified, your submission 
will be accepted and the errata will be uploaded on our website, or added to any list of 
existing errata, under the Errata section of that title. Any existing errata can be viewed 
by selecting your title from http://www.packtpub.com/support.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support
https://www.packtpub.com/sites/default/files/downloads/8582EN_ColoredImages.pdf
https://www.packtpub.com/sites/default/files/downloads/8582EN_ColoredImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support


Preface

[ x ]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. 
At Packt, we take the protection of our copyright and licenses very seriously. If you 
come across any illegal copies of our works, in any form, on the Internet, please 
provide us with the location address or website name immediately so that we can 
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you 
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with 
any aspect of the book, and we will do our best to address it



[ 1 ]

Pseudo Random Numbers
This chapter will introduce the idea of procedural content generation and one highly 
useful component, pseudo random numbers. Later in the chapter, you will use 
pseudo random numbers to create a derivation of the classic Hello World program. 
For convenience, procedural content generation will be abbreviated to PCG for the 
remainder of the text. Let's also abbreviate pseudo random numbers to PRNs.

Here's a quick overview of what the chapter will cover and what you will learn:

•	 Define PCG: What it is and what you can do with it
•	 Discover PRN generation
•	 Learn how PRNs relate to PCG
•	 Use PRNs in our first program
•	 Develop a new randomized PCG like the Hello World program

In this chapter, we will complete a very simple step-by-step example. The example 
in this chapter will be simple enough to help introduce newcomers to Unity and 
also serve as a refresher to those coming back after some time away. However, it is 
important to remember that the successive examples will be much more involved.  
It is best that you are fundamentally familiar with Unity and C# scripting in Unity.

Unity Technologies offers a range of tutorials for beginners at 
https://unity3d.com/learn/tutorials.
You can also reference the Unity Documentation if you need to 
know the usage of any specific part of Unity at http://docs.
unity3d.com/Manual/index.html.

Now, let's dive in and start learning.

https://unity3d.com/learn/tutorials
http://docs.unity3d.com/Manual/index.html
http://docs.unity3d.com/Manual/index.html


Pseudo Random Numbers

[ 2 ]

Introducing PCG
We begin our learning adventure with the broad concept of PCG. The key word 
here is procedural. A procedure in programming, simply put, is an instruction to be 
executed. Procedures are the main paradigm in computer programming. A script you 
write in Unity is just a set of instructions or procedures we want Unity to perform.

You use procedures, methods, or functions as a means to communicate the 
instructions you want the computer to complete. We can use these same procedures 
to instruct the computer to generate content in many different ways. We can apply 
this idea to a broad range of programming disciplines such as data visualization, 
dynamic advertising, and so on, but in this book, we are using it for video games.

If procedural is the how then content is the what. Content can be anything we are 
presenting to the user. In our Hello World example later in the chapter, our content 
will simply be text. However, video games have a wide range of assets that make up 
the content we want to deliver to a player.

Typically, we think of the levels, character models, and other art assets when we 
think of content in video games. But there is also textures, music, sounds, story, 
artificial intelligence, and more that together make up the content of a game. PCG is 
the concept or paradigm by which all these pieces of content can be generated with 
some well-written code. PCG can be applied to nearly all aspects of a game through 
scripting, and you will learn some of the main ways to do this throughout the book.

On the left is a hand-drawn texture, and on the right is a Procedurally Generated texture



Chapter 1

[ 3 ]

What's exciting about PCG is that we can let the computer take some of the 
responsibilities of the designer by giving it some instructions and letting it create 
parts of the game world on its own. We might even be surprised by the results. As 
developers, we usually do not like being surprised by our script's actions, but in this 
case, it's part of the plan.

PCG can also come in a few different forms for practical use. We can generate 
content from scratch, such as the texture see earlier, or we can generate assets from 
a set of premade parts, such as generating a tavern scene from premade props such 
as tables, chairs, barrels, and crates. Another option, though, is providing tools to 
the player to take on the role of creating content. The player creating content isn't 
necessarily PCG but you will have created a PCG system that now takes user input 
as a parameter. A great example of this is the popular game Minecraft developed  
by Mojang.

A player-created building in the popular game Minecraft

Minecraft is also an example of one of the most popular uses of PCG, randomization. 
Players in Minecraft can make structures and break down the land around them. 
However, the game's entire landscape is based on randomization. Randomization 
is used in many games, both virtual and table top. Randomness introduces a chance 
factor that creates fun out of unpredictability.

However, the most important thing about randomness in video games is that it is 
almost impossible to achieve true randomness on a computer system. This is why we 
refer to them as pseudo random numbers, because they are technically not random. 
We will explore this aspect of randomness, or pseudo randomness, later in the 
chapter with PRNs.



Pseudo Random Numbers

[ 4 ]

Usage of PCG
The reasons we might consider using PCG include unique, robustness, adaptability, 
and size. We might strive for our player to experience the game in their own truly 
unique play-through. We could use PCG to take the content that we have designed 
and make truly robust games that would take many hours to explore every inch of. 
We can make our game adapt to the player in interesting ways such as scaling the 
difficulty to easier or harder based on the actions of the player.

Size, though, is an interesting benefit to PCG. Well before games played with 
amazing HD graphics at 60 frames a second, they were mostly text based. Early 
computer systems were very limited both in processing power and storage memory. 
One of the earliest occurrences of PCG was in games that procedurally generated 
levels using ASCII characters. We can see an example of this in the game Rogue 
developed in the 1980s. We discuss Rogue and the subsequent sub-genre of  
games Roguelike in later chapters.

PCG was thus a solution, of sorts, to the fact that early computers really had no 
means to present graphics to the player. Graphics comprise the bulk of a game 
in terms of size taking a lot of processing power and memory. The procedurally 
generated ASCII levels of Rogue were calculated instead of being loaded from the 
file. This meant early computer systems could use memory and processing power as 
needed instead of needing a lot of memory all at once when you start a predefined 
game level.

We can also consider size savings in terms of our team as well. A designer/artist 
typically will need to make every piece of game content by hand. As games get 
larger, it becomes more difficult to create enough unique content within one game. 
Games lose their reward factor and players become bored easily when they see 
continuous repetition of in-game content. We then need to produce more content, 
which means more designers, artists, and individual assets. PCG helps alleviate  
this need by taking on some of the burden of producing unique content.

PCG can thus be viewed as a tool for the designer. There is a very creative facet 
to the idea of PCG. We can design pieces or modules of a whole, like a level or 
item, and use PCG to put them together in unique and interesting ways. We could 
also make 3D models, but then, we would have to generate the textures for them. 
Otherwise, we could generate full levels from scratch and add in some designed 
props. There are plenty of possibilities to fit the situation or team's needs.



Chapter 1

[ 5 ]

Some of Gearbox Software's Borderlands procedurally generated weapons, each generated from asset modules

You also have a unique opportunity to create games that can expand infinitely (or 
close to it). We will see this later in the book when we learn how PCG can be used to 
create a game level that never ends. Are you convinced that PCG is an amazing game 
development component?

Application of PCG
Where we can apply PCG is an interesting question, as it can theoretically be applied 
to every aspect of a game. Here is a brief list of examples of where it has already  
been used:

•	 Level layout—Blizzard Entertainment's Diablo series
•	 Unique item creation—Gearbox Software's Borderlands series



Pseudo Random Numbers

[ 6 ]

•	 AI behavior—Hisanori Hiraoka, Daisuke Watanabe, and Kyohei Fujita's dreeps
•	 Texture generation—Farbrausch's .kkrieger
•	 Model Generation—Speed Tree (which can be used with Unity)
•	 Storyline—Bethesda's The Elder Scrolls 5: Skyrim Radiant Quests system
•	 Music—Ed Key and David Kanaga's Proteus

This list encapsulates some of the more popular uses of PCG. As a game lover, you 
are encouraged to research each of these games as they are wonderful examples  
of PCG. We will cover most of these topics in this book, but this is by no means  
an exhaustive list of how PCG can be used in game development.

So now you know what PCG is but what about implementing it? To put it plainly, 
PCG is just the idea that we can automatically generate game content. We will 
develop different algorithms and use certain programming practices to apply  
the idea of PCG to our video games.

One of the more popular ways to implement PCG utilizes randomness or random 
events to produce content. It is popular because it is easier to let randomness 
determine certain events over scripting every outcome. For example, we might 
let randomness determine which pieces are used to generate the weapons seen 
previously in Gearbox's Borderlands. We might use a pseudo random number 
generator and bind each piece of the weapon to a randomly determined number.  
Of course, keep in mind that this isn't truly random as we will soon discuss further.

Pseudo random numbers
Random numbers have been used in games for a very long time, from traditional 
card games to dice rolling in table-top games. Random numbers add a chance factor 
to games that make them exciting and forever unpredictable. The unpredictability of 
a game is exciting because it always offers a unique experience. You can introduce 
this randomness factor into your games with a little computer science in the form  
of a PRN generator.

PRNs and PRN generators are a highly researched subject in computer science, 
as they are central to cryptography and cyber security. If you ever look into 
cryptography, you'll find it heavily steeped in complicated mathematics. Luckily, 
Unity has a very easy method to generate random numbers. Certainly, the 
complexity of secure number generation isn't required for video games. Nonetheless, 
it is important to understand some of the theories behind what seems like magic.



Chapter 1

[ 7 ]

Random versus pseudo random numbers
The most important distinction to make is that PRNs are not random numbers. A 
truly random event would be something like a die roll. We could write some sort of 
physics simulation to simulate a die roll to achieve a random number. We could also 
take the static from a TV screen and plot it on an XY plane and take a single point to 
represent a random number. However, PRNs are preferred in game programming 
because they are easier to generate. The preceding examples would take too much 
processing power as they are a fairly complex idea. But a PRN generator is an 
equation that calculates a string of numbers. This also produces an added benefit  
of being able to find our way back to a certain generated result.

You could generate a more random sequence of numbers by grabbing points off our 
TV static graph, but what if you want to reproduce a result? Imagine we created an 
entire planet using a specific sequence of random numbers. Unless we generate that 
planet the first time, record the sequence used, and ship the game with the sequence 
included in the code, we might never be able to reproduce those results again.

Now imagine we generated trillions of planets. We would have to somehow come up 
with a system to store all the results of generating each planet on the first run. That 
just sounds unwieldy. A PRN generator, however, uses a seed number to generate 
a sequence, which will eventually repeat. So, instead of saving all the information 
needed to generate the planets, we just need the PRN generator equation and seed  
to regenerate all the planets at runtime.

Random number noise signals – on the left is a random number pattern  
that does not repeat and on the right is a PRN pattern that repeats



Pseudo Random Numbers

[ 8 ]

A seed in reference to PRNs, is simply a number either designated by you or by 
some other pseudo random means. The Unity Random method will acquire a seed 
from the system time if you don't provide one. The seed of a PRN generator can 
be stored as a variable like you would store any number in a script. This is useful 
when we need to recreate the sequence. We just plug our seed back into our number 
generator and get the same sequence again.

For example, imagine we used a sequence of PRNs to create a level. Let's say the 
numbers represent whether a room, a hallway, or a trap is placed in a certain area. 
Now, a player has just finished that level and we decide to delete the level to save 
space in the memory. But later, the player gets a quest that requires them to go back 
to that same level. If we keep the seed number we used to generate the level, we can 
put the seed back into our number generator, get the original sequence, and remake 
the level as it was initially.

As stated earlier, one of the side effects of PRN generation is that it is cyclical. There 
comes a point in which the PRN generator generates the seed again, starting the 
process over. This is important to consider as it might become a cause of repetition in 
some of your procedurally generated content. There are multiple factors in avoiding 
repetition, such as the size of the number, the value, and the sequence range. Unity's 
Random method should be enough for most cases though.

So, in short, you know that PRNs are not random numbers but they are close 
enough. The key points are:

•	 PRN generators need a seed value
•	 You should store the seed value so we can easily recreate the PRN sequence
•	 PRN generators will eventually repeat
•	 If repetition becomes a problem, look into creating a more complex equation 

for a longer seed range

PRNs are cool and all, but how are they used?

PRNs in PCG
You can use PRNs as a decision driver to PCG. As a developer you want to be 
concerned about minimizing minor detail decisions. These decisions could be tasks 
such as placing every single tree by hand in a forest scene. You want the scene to 
look realistic but placing all of them yourself could be very time consuming. You can 
use PCG for some of this decision making. Using some directed randomness to build 
the forest for you saves a massive amount of time.



Chapter 1

[ 9 ]

A forest scene created with Unity Terrain Engine which uses PRNs

So it's time to get our hands on this! As previously stated, PRN generation can be 
a complicated mathematical problem but Unity has a built-in class for us called 
Random. Now, let's get exposed to PRNs in our first PCG example.

Random Hello World
We are going to start with an age-old classic programming example, the Hello 
World program. If you have been programming for a while, you likely have done 
one or more of these already. There will be a twist though. We are going to use PRNs 
to randomize how we say Hello World.

Be aware that this book is using Unity 5.2.2. Some of the examples 
will be incompatible with earlier versions.



Pseudo Random Numbers

[ 10 ]

Classic Hello World
Let's begin by setting up the project and completing the classic Hello World 
program. Start by launching Unity and creating a new project. You can name it 
Hello World. You can also set the perspective to 2D since most of what we do  
in this book will be in 2D.

Unity launch screen

Once the project is loaded, we will create a new Text GameObject in order to render 
our Hello World to the screen. On the top toolbar, select GameObject | UI | Text. 
This will place a new Canvas object with a Text object child onto the scene. An 
EventSystem is also placed in the Hierarchy panel but you can ignore this.

If you are unfamiliar with or would like to know more about Unity's 
UI features, Unity Technologies offers video lessons on the topic. 
You can find them at http://unity3d.com/learn/tutorials/
topics/user-interface-ui.

http://unity3d.com/learn/tutorials/topics/user-interface-ui
http://unity3d.com/learn/tutorials/topics/user-interface-ui


Chapter 1

[ 11 ]

Canvas is mostly off screen and you have to zoom out quite a lot to see the full view. 
Rather than zooming out, let's adjust the Canvas to occupy the Main Camera view 
space, as follows:

1.	 Select Canvas.
2.	 Select the Render Mode dropdown in the Canvas component section.
3.	 Select Screen Space - Camera.
4.	 This will open up a new field called Render Camera.
5.	 From the Hierarchy pane, drag and drop the Main Camera object into the 

Render Camera field.



Pseudo Random Numbers

[ 12 ]

This will adjust your Canvas object to fit the Main Camera view. You might still 
need to zoom out slightly to see the edges of Canvas.

Workflow to get the Canvas in Main Camera view

You might have noticed at this point that there is some text on the screen. In the 
lower left corner of the Canvas, it says New Text in a default grey that is difficult to 
see. Let's change that.

Select the Text object, which is a child of the Canvas object. First, we will change the 
position. In the Rect Transform component section:

1.	 Select the value in the Pos X field and change it to 0.
2.	 Repeat for the Pos Y field.

The anchors are set to center so the Rect should snap to the center of the Canvas. 
Next, we'll change the size of the Rect so that we can make the text larger:

1.	 Select the Width field and change it to 500.
2.	 Select the Height field and change it to 65.



Chapter 1

[ 13 ]

This will allow us to have much larger text. Note that if we had just tried to change 
the font size without changing the Rect size, the text would be clipped or would 
even vanish completely. Now let's get the text looking nice by going to the Text 
(Script) component section:

1.	 Under Character, select the Font Size field and change it to 55.
2.	 Under Paragraph, select the center alignment button.
3.	 Select the Color field and change it to white.

The center alignment button appears as  in the Unity Editor.

Now our text is nice and visible. At this point, you can select the text in the Text field 
and delete it. We are going to have our script write the text for us.

Finished canvas and text formatting

Let's start scripting by creating a new C# script. On the top toolbar, select Assets 
| Create | C# Script. This will create a new script in your Assets folder under the 
Project pane. You can name the script HelloWorld.cs.



Pseudo Random Numbers

[ 14 ]

Open the script in MonoDevelop or your favorite IDE. We are going to use the 
following Code Snip 1.1:

1 using UnityEngine;
2 using UnityEngine.UI;
3 using System.Collections;
4 
5 public class HelloWorld : MonoBehaviour {
6 
7   public Text textString;
8 
9   void Start () {
10     textString.text = "Hello World";
11  }
12 }

Downloading the example code
You can download the example code files for all Packt books you have 
purchased from your account at http://www.packtpub.com. If you 
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

Let's take a look at what's happening in Code Snip 1.1:

•	 Line 2: Be sure to include UnityEngine.UI or you won't be able to access 
the Text component

•	 Line 7: This is our public Text object, which we will define in the  
Unity editor

•	 Line 10: At the start of the scene, we will take our text object and assign the 
string Hello World to it.

That's all there is to it. Now, we just need to add the script to the scene. It doesn't 
matter which object you attach the HelloWorld.cs script to because we will declare 
the specific Text object the script acts on. To keep things organized, this way  
works well:

1.	 Drag and drop the HelloWorld.cs script from the Assets folder to the Text 
object on the scene.

2.	 Drag and drop the Text object from the Hierarchy pane to the Text String 
field in the Hello World (Script) component of the Text object.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support


Chapter 1

[ 15 ]

Now, you can press the play button, and you'll see Hello World in a large font:

Hello World program's result

That completes the Hello World program. However, that's not all that interesting.  
In order to give this classic programming example some new flair, let's add  
some randomness.

PCG Hello World
Using our Hello World example, we will add PRNs into the mix and give our 
program some procedurally generated text. We'll start by editing our current 
HelloWorld.cs script. The goal here is to randomly display one of a few  
variations of the Hello World text.

You can achieve this by creating an array of different strings and having Unity's 
Random method choose a number from 0 to the length of the array. You will use that 
PRN as the index of the string array. In this case, our array holds the Hello World 
string in a few different languages. So instead of telling the Text object to display 
Hello World, we will tell it to display the contents of the array at the PRN index.



Pseudo Random Numbers

[ 16 ]

Unity's Random.Range has a usage of (inclusive, exclusive). In our 
code, we use Random.Range (0, 4), which means 0 will be in the 
selected range but the range stops at 3. One reason for this is if we 
have a C# list, we can write the range as (0, List.Count) instead 
of (0, ListCount - 1).
You can find more information on Unity's Random at http://docs.
unity3d.com/ScriptReference/Random.html.

Open the HelloWorld.cs script and make the following changes in Code Snip 1.2:

5 public class HelloWorld : MonoBehaviour {
6 
7   public string[] hellos = new string[4] {
      "Hello World", "Hola Mundo",  
      "Bonjour Le Monde", "Hallo Welt"};
8 
9   public Text textString;
10
11  void Start () {
12    Random.seed = (int)System.DateTime.Now.Ticks;
13    int randomIndex = Random.Range (0, hellos.Length);
14    textString.text = hellos[randomIndex];
15  }
16 }

The changes in Code Snip 1.2 are as follows:

•	 Line 7: Here you will declare a string array that we can call hellos, which 
will hold all our Hello World strings.

•	 Line 12: This is the PRN generator seed, which we discussed earlier in 
the chapter. We are picking a random number to seed the generator. The 
seed comes from your computer's current time in processor ticks (which is 
somewhere around a millisecond).

•	 Line 13: Here, we call Random.Range to choose a PRN from 0 to 3, which 
will be the index of hellos that we choose to display.

•	 Line 15: This line is a modification from our previous example; here, we set 
the text display to our randomly selected Hello World string.

http://docs.unity3d.com/ScriptReference/Random.html
http://docs.unity3d.com/ScriptReference/Random.html


Chapter 1

[ 17 ]

Head back into the Unity editor to see the changes. You should see the new Hellos 
field. If you expand it, then you will see all of the strings contained in the array. The 
script might also lose connection to the Text object. You can just drag and drop the 
Text object into the Text String field to reconnect it.

Hello World with PRNs program result

And that's it. You completed your first PCG capable program. Test it out by pressing 
the play button. You will randomly get one of the four Hello World strings 
displayed in the Game screen. There are only four choices so you might have  
to try a couple of times before you start seeing any variation.

Challenge
As an added challenge, you can turn this into a die simulator. Try on your own to 
have the script display a random number from 1-6. You can, instead of displaying 
text, display an image of a die face. Also, see if you can display the image and store 
the random number corresponding to the die face for reference.

You can also try changing the seed to a number of your choice. If you play the 
scene with a constant number, you will get the same result every time. Try different 
numbers for different results. This is the benefit of the seed value; even though we 
are introducing a bit of randomness to our game, we have a way to control it. We 
will explore the seed value further in a later chapter.



Pseudo Random Numbers

[ 18 ]

Summary
So you learned quite a bit of theory in this chapter and just touched the surface of 
how to apply it to games in Unity. You went over an introduction to PCG and why 
and how to use it. You were also introduced to PRNs and to how they are generated. 
We discussed what makes PRNs different from your average random number and 
the benefit a seed provides. You also learned why and how to use PRNs and then 
completed an example expanding on the classic Hello World program.

So what's left? Well, we are gearing up to build a fully functional game throughout 
this book. We are going to look at some of the more popular applications of PCG 
in video games. In the next chapter, we are going to briefly get acquainted with 
Roguelike games, which is a popular game subgenre. Roguelike games are known for 
their procedurally generated content, so it is a perfect fit for our learning adventure.



[ 19 ]

Roguelike Games
This chapter will introduce a popular video game subgenre known for its use of 
PCG, called Roguelike. In the second half of the chapter, we will be setting up our 
Roguelike project, which will be used for the rest of the book. Here is an overview  
of what to expect in this chapter:

•	 Discovering Roguelike games
•	 Learning why Roguelike is a perfect fit for our PCG project
•	 Setting up our project

This chapter will begin our intermediate level work in Unity. From this point 
onward, it is best that you have a fundamental knowledge of the Unity Editor  
and C# scripting. As a reminder, this project was built using the current version  
of Unity (5.2.2), so there will be some incompatibilities with previous versions.  
The files used to set up the project will be included in the accompanying files  
under Chapter 2. However, all of the code files will be covered in the chapter  
for those of you who prefer to write them out yourselves.

We will be working from an existing project including both art and code assets. 
The art files that are included have some dependencies that need to be set. There is 
a Unity package included, which can be imported, that will contain all the prebuilt 
art dependencies. All of the art files will be explained that will aid your overall 
understanding of the project structure. If you are comfortable with 2D sprite 
animations, you are welcome to use your own art.

Now, let's discuss PCG in Roguelike games.



Roguelike Games

[ 20 ]

An introduction to Roguelike games
Roguelike is a subgenre of the genre Role-playing Game (RPG). Its name originates 
from a game called Rogue released in 1980 by Michael Toy and Glenn Wichman. 
Rogue is known for its use of PCG, particularly in level creation. The game used 
a tile-based level generation system, in particular ASCII characters were used to 
represent tiles.

Image of Rogue (1980) by Michael Toy and Glenn Wichman



Chapter 2

[ 21 ]

A tile is a small piece of art, typically depicting land or ground that can be laid 
out like a game board. Imagine a Chess or Checkers board, but each square can be 
replaced with a small rectangular picture. In tile-based games, it is typical that the 
player character only occupies a single tile space at a time. Our Roguelike game will 
use a tile-based level generator, as well.

Tile sprite sheet from the popular game, Pokemon, developed by Game Freak

Other typical traits and gameplay mechanics of Roguelike games include 2D graphics, 
random player items, turn-based gameplay, and permanent player character death. 
Games that mimic the 1980's Rogue have been popular among the indie game market. 
Roguelike games' use of PCG makes them ideal for easier art asset production and 
potentially cheaper to develop.

Why Roguelike?
The fact that Roguelike games are dependent on PCG makes them an ideal candidate 
to learn this topic. Also, working in 2D will simplify our algorithms so that we 
can focus on the theory of PCG. An added bonus is that Roguelike games are fairly 
popular, so there are some really helpful resources out there that can aid you in 
your learning. We will even use one such resource, which is a tutorial from Unity 
Technologies itself.



Roguelike Games

[ 22 ]

Our own Roguelike project
So now that you know a little more about Roguelike games and why we are going 
to use them to learn about PCG, let's take a look at our main project. This project 
will use a predefined art asset group and code base. We will be getting these assets 
from the Unity Technologies tutorial 2D Roguelike. This tutorial was actually the 
inspiration for this book, so it's only fitting that we showcase some of it.

Unity Technologies' 2D Roguelike—courtesy of Unity Technologies

The full Unity 2D Roguelike tutorial can be found 
at https://unity3d.com/learn/tutorials/
projects/2d-roguelike-tutorial.
All the assets used in the tutorial are available via the 
Unity Asset Store at https://www.assetstore.
unity3d.com/en/#!/content/29825.

Even though we are using the assets from Unity's 2D Roguelike, this won't be  
a recreation of the tutorial. We want to explore more of what PCG has to offer,  
so we will only be using a portion of Unity's original tutorial. Also, having the  
art assets predefined in this way will be helpful in allowing us to dive right into  
the PCG development.

https://unity3d.com/learn/tutorials/projects/2d-roguelike-tutorial
https://unity3d.com/learn/tutorials/projects/2d-roguelike-tutorial
https://www.assetstore.unity3d.com/en/#!/content/29825
https://www.assetstore.unity3d.com/en/#!/content/29825


Chapter 2

[ 23 ]

Setting up the project
Let's set up our base project. There will be two methods we will cover in setting up 
this project. You can either import the provided Unity package or you can follow 
through the code explanations in the File Overview section and write the code by 
hand. Either way, it is highly advised that you read through the code explanations  
to understand the structure of how the project operates.

Importing the base project
We will import a package that will contain more assets and use them right away. 
However, keep in mind that we will use all the assets eventually. All of the files  
are explained in the File Overview section of this chapter:

1.	 Start by opening up Unity and creating a new project. Select 2D and then 
Create Project. We won't need to import any Standard Asset packages for 
this project.

2.	 Once in Unity Editor, navigate to Assets | Import Packages | Custom 
Package... from the top menu bar. Navigate to the directory where you  
saved the code files that accompany this book. In the Chapter 2 folder,  
select the Chapter2Assets.unitypackage and open it. You will get a  
pop-up displaying all the assets in the package. You can click on OK  
and Unity will import the package.

3.	 After the package has been imported, there might be a warning message 
that you can disregard for now. You now have several more folders in your 
Assets folder. Navigate to the Scenes folder and open the Main scene.

4.	 You will see some game objects in your Hierarchy panel and some text on 
the screen of your Game view panel. You can now click on the play button  
to see a small animated character. You can move the character using the  
W, A, S, and D keys or the arrow keys.



Roguelike Games

[ 24 ]

Take notice of the character's movement. The character moves the 
width of a tile and is on a turn-based timing system. When a key is hit, 
the player character will move in that direction and into the adjacent 
tile; they will then wait for the enemies to take a turn. There are no 
enemies, so the player can move the character again immediately.

Results of importing the package and clicking on play

File overview
Let's go over the files so that we understand how the project is structured. First, your 
folder structure should follow this format:

Folder structure for the Roguelike project



Chapter 2

[ 25 ]

Animation
In the Animation folder, there are two subfolders, Animations and 
AnimatorControllers. The Animations folder contains three sprite animations 
that the player character uses. The AnimatorControllers folder contains the 
animator controller that the player character uses to run its animations. These files 
are already integrated into the Player prefab from the Chapter 2 import package.

Fonts
The Fonts folder contains the font file PressStart2P-Regular.ttf and the Open 
Font License. You can disregard the license. The font is already applied to the text 
that is visible in our game preview.

Prefabs
The Prefabs folder holds the tile set we will use to create our game board in the 
next chapter. This also holds GameManager and Player, which are being used to 
run our base project. Player is referenced directly on the Hierarchy panel and the 
GameManager is referenced via a script in the Main Camera.

•	 The Player prefab requires the BoxCollider2D, RigidBody2D, and 
SpriteRenderer components and the Player.cs script

•	 The GameManager prefab requires the GameManager.cs script
•	 Wall prefabs require a BoxCollider2D and SpriteRenderer component  

and the Wall.cs script
•	 The OuterWall prefabs require a BoxCollider2D and SpriteRenderer 

component
•	 The Floor prefabs requires a SpriteRenderer component

Scenes
The Scenes folder holds our main scene. This is where our base game is set up  
and it is where we will add all our features. The Hierarchy panel shows what  
the scene holds.

The Main Camera is included in every Unity scene; this holds our GameManager 
prefab. The Player prefab holds the player character animations and functionality. 
The Canvas object contains a text object called HealthText, which is the source  
of the in-game text currently showing. The EventSystem object accompanies the 
Canvas object by default.



Roguelike Games

[ 26 ]

Scripts
The Scripts folder contains all the scripts needed to run our base game. Some of the 
scripts are meant as hooks for future features. We will go over all the script files that 
came in the Unity package and discuss the relevant parts.

The first script is BoardManager.cs, as seen in Code Snip 2.1:

1 using UnityEngine;
2 using System;
3 using System.Collections.Generic;
4 using Random = UnityEngine.Random;
5
6 public class BoardManager : MonoBehaviour
7 {
  [Serializable]
8  public class Count
9  {
10    public int minimum;
11    public int maximum;
12    
13    public Count (int min, int max)
14    {
15      minimum = min;
16      maximum = max;
17    }
18  }
19 }

The BoardManager script, so far, only holds a Serializable public class called 
Count, which we will use to aid us in randomizing our game board tiling. We 
can also use this class for any type of list randomization, such as placing items 
and enemies on the game board. The BoardManager script will be called by the 
GameManager script at the start of the game to set up the level.

Let's take a look at the code itself:

•	 Line 3: System.Collections.Generic allows us to use C# lists, which will 
come in handy later.

•	 Line 4: There are actually two random classes within Unity. One is the 
Unity class and the other is the .NET class. This line says that we want  
to use the Unity-specific Random method. The reason for this is the Unity 
Random method is optimized for game development.



Chapter 2

[ 27 ]

•	 Line 8: The class, Count, is declared Serializable so that we can see the 
class's properties while in the Unity Editor.

•	 Lines 11-12: These are the properties Count will keep a track of. We will 
use minimum and maximum as a random range.

•	 Lines 14-18: This is the class constructor.

For more information on script serialization and the serializable key 
word, visit the Unity Documentation at http://docs.unity3d.
com/ScriptReference/Serializable.html and http://
docs.unity3d.com/Manual/script-Serialization.html.

The Loader.cs script is responsible for instantiating the GameManager class,  
which runs the essential parts of our game. You can see the script in the following 
Code Snip 2.2:

1 using UnityEngine;
2 using System.Collections;
3 
4 public class Loader : MonoBehaviour 
5 {
6   public GameObject gameManager;
7   
8   void Awake ()
9   {
10    if (GameManager.instance == null)
11      Instantiate(gameManager);
12  }
13 }

Lines 8-12 are an important part of this script. The Awake function simply creates a 
new GameManager if one doesn't exist already. So let's discuss the GameManager.cs 
script, which is the connection point for all the other scripts.

The GameManager.cs script is too large to print in the middle of the chapter, so it can 
be found in the Appendix section under Code Snip 2.3. Instead, we will overview the 
functions that comprise the script.

•	 Awake(): The Awake function establishes the GameManager as a singleton,  
it sets up an enemy list (which we will use later), and initializes the game.

http://docs.unity3d.com/ScriptReference/Serializable.html
http://docs.unity3d.com/ScriptReference/Serializable.html
http://docs.unity3d.com/Manual/script-Serialization.html
http://docs.unity3d.com/Manual/script-Serialization.html


Roguelike Games

[ 28 ]

Singletons are programming paradigms in which only  
one singleton can exist during the program's runtime.  
This means that there is only ever one GameManager 
for every scene/level in our game.
For more information on singletons in Unity,  
visit http://wiki.unity3d.com/index.php/
Singleton.

•	 OnLevelWasLoaded (int index): This function will track our dungeons 
when we create them.

•	 InitGame(): InitGame only clears the enemy list, which will be more useful 
when we actually have enemies. This will be the function we call to initialize 
our main level.

•	 Update(): The Update function checks whether it is the player's turn or the 
enemy's turn. Since there are no enemies yet, it is always the player's turn.

•	 GameOver(): When called, this function will disable the GameManager class.
•	 MoveEnemies(): This is called when it is the enemy's turn to move. There are 

currently no enemies, so this function just creates a pause letting the player 
character complete its move before another one can be taken. Having this 
structure predefined will make it easier to add in enemies later.

Next, we will take a look at the Wall.cs script, which gives properties to certain tiles 
that can block the player's movement. You see the Wall.cs script in Code Snip 2.4:

1 using UnityEngine;
2 using System.Collections;
3 
4 public class Wall : MonoBehaviour
5 {
6   public Sprite dmgSprite;
7   public int hp = 3;
8
9   private SpriteRenderer spriteRenderer;
10
11  void Awake ()
12  {
13    spriteRenderer = GetComponent<SpriteRenderer> ();
14  }
15  
16  public void DamageWall (int loss)
17  {
18    spriteRenderer.sprite = dmgSprite;

http://wiki.unity3d.com/index.php/Singleton
http://wiki.unity3d.com/index.php/Singleton


Chapter 2

[ 29 ]

19
20    hp -= loss;
21    
22    if(hp <= 0)
23      gameObject.SetActive (false);
24  }
25 }

This script won't be visibly useful until we write the code that will lay out our game 
board. For now, the script dictates that if there is a wall, it will block the player and 
some walls are destructible. Let's go through Code Snip 2.4:

•	 Line 6: We will store a reference to the sprite that will show a wall has  
taken damage.

•	 Line 7: Here, we will store the number of times a wall is hit before it  
is destroyed.

•	 Lines 9-14: The Awake function will store a reference to the SpriteRenderer 
component of our Wall prefab.

•	 Lines 16-24: The DamageWall function will track the times a wall is hit, 
switch out sprites to show wall damage, and eventually destroy a wall  
that has been hit enough.

The last few scripts are related in a sense. The MovingObject.cs script is an abstract 
class, meaning it can't be applied directly to our game. Instead, the Player.cs and 
Enemy.cs script inherit from the MovingObject class. The reason for this is the 
Player and Enemy prefabs will move in a similar way, so instead of writing the 
movement logic twice, we write it once and have both prefabs use it.

Because the MovingObject.cs script holds most of the movement logic, it is a  
larger file. So instead of printing it here, you can view it in the Appendix under 
Code Snip 2.5. As an alternative, we will overview the code as we did with the 
GameManager.cs script:

•	 Start(): The Start function stores the BoxCollider2D and RigidBody2D 
components attached to the Wall prefab. It also stores the reciprocal of a 
variable called moveTime, which is used to time the character's movement. 
We store the reciprocal here so that we can multiply the move time instead 
of dividing it later. Multiplication is computationally more efficient than 
division in most cases.



Roguelike Games

[ 30 ]

•	 Move(int xDir, int yDir, out RaycastHit2D hit): Move checks whether 
the player can move in the direction they have input. The function casts a ray 
out from the player character in the direction input and if it hits anything, it 
returns false. The RaycastHit2D parameter hit, has a key word out so that it 
can be modified in the function and the effect is carried to outside the scope of 
the function.

•	 SmoothMovement (Vector3 end): This is a coroutine for moving units from 
one tile space to the next. It takes a Vector3 parameter, end, to specify where 
to the movement destination.

For more information on coroutines, visit http://docs.
unity3d.com/Manual/Coroutines.html.

•	 AttemptMove<T>(int xDir, int yDir): AttemptMove is called by Move  
to check whether the player/enemy is being blocked from moving. It takes  
a generic parameter T to specify the type of component we expect our unit  
to interact with if blocked. This makes the function usable for any case  
of blocking action. Walls block a player's movement, but so will enemies.  
The virtual keyword means AttemptMove can be overridden by inheriting 
classes using the override keyword.

•	 OnCantMove<T>(T component): OnCantMove will be called when a player/
enemy character is blocked from moving. There will be some logic here on 
how to handle certain blocking events. This function is abstract, which means 
it has no meaning in MovingObjects. However, any child classes will have a 
unique implementation of this function.

Now that we've seen the base class for our characters, let's take a look at the most 
important character class, the Player class. This script is another one that is too  
large to print here, so you can find it in the Appendix section under Code Snip 2.6. 
Here is an overview of the Player.cs script:

•	 First off, this class inherits from the MovingObject class, not MonoBehaviour.
•	 Start(): Here, we store the animator, get a reference to health points, set up 

the health point text, and call the MovingObeject base Start function.
•	 Update(): The Update function listens for player input and calls for movement.
•	 AttemptMove<T>(int xDir, int  yDir): This is an override function 

whose base is in the MovingObject class. For now, it just calls the base 
AttemptMove function and updates the player's turn. Later, we will add  
into this function.

http://docs.unity3d.com/Manual/Coroutines.html
http://docs.unity3d.com/Manual/Coroutines.html


Chapter 2

[ 31 ]

•	 OnCantMove<T>(T component): This is another override function. We check 
whether we hit a wall here. If we hit a destructible wall, we will attack it.

•	 LoseHealth(int loss): Here, we will manage our player character losing 
health when we add enemies.

•	 CheckIfGameOver(): Finally, this is just a check for ending the game when 
our player runs out of health. Again, this is going to be relevant when we 
add enemies.

Last is our Enemy script. Like the Player class, this also inherits from the 
MovingObject class. It can be viewed in Code Snip 2.7:

1 using UnityEngine;
2 using System.Collections;
3
4 public class Enemy : MovingObject
5 {
6   protected override bool AttemptMove <T> (int xDir, int yDir)
7  {
8     return true;
9  }
10
11  protected override void OnCantMove <T> (T component)
12  {
13  }
14 }

This class holds no logic at the moment. It has the two override functions that are 
required for the class to exist, but they are empty. We are using this script currently 
to add a delay in the player's movement. We are implementing a turn-based system 
so we check for enemy movement and because there is none, it's the player's turn 
again. Having this script predefined will save us some time later. However, since the 
script inherits from the MoveingObject class, the system requires the placeholder 
override function at a minimum.

So that's all there is to the base project. You can use your own art assets if you like. In 
fact, at the very least, you should try replacing the current art assets with your own at 
some point during your reading. This is good practice for learning Unity in general. 
Just be sure they meet the setup requirements, as explained in the Prefabs section.



Roguelike Games

[ 32 ]

Summary
We just finished setting up our base project. Doing this will allow us to focus less on 
developing common gaming mechanics and more on PCG development. We also 
took a look at Roguelike games and how they uses PCG in tile based level generation.

During this chapter, you learned about the RPG subgenre Roguelike, which is an ode 
to the 1980's game, Rogue. We talked about the Roguelike game's inherent use of PCG, 
which is the reason we are developing one. And we set up our base project from 
which we will be developing our game. Now, we are ready to start learning how to 
build some PCG logic.

In the next chapter, you will put what you've learned about Random numbers and 
Roguelike games to work. We will be using our floor and wall tiles to build an endless 
game world.



[ 33 ]

Generating an Endless World
Our base project is setup and ready to be expanded upon. You received an intro 
to PRNs and PCG by making a quick Hello World program. However, it is time 
to develop a fully functional PCG algorithm that can be directly applied to our 
Roguelike game.

Our game has the base functionality of a player character capable of movement by 
player input. In this chapter, we will create the tile-based Game Board that the player 
will explore. This Game Board will expand itself as the player moves, and as there 
are no bounds, the board is potentially infinite. In this chapter, you can expect:

•	 To learn about dynamic data structures
•	 To design our first PCG algorithm
•	 To set up a scene that allows for an ever expanding game world
•	 To develop our PCG Game Board



Generating an Endless World

[ 34 ]

By the end of the chapter, you will have developed a PCG game world that is unique 
with every play. Plus, you will have achieved this with a relatively small amount 
of assets. We have to do some learning and planning first. So let's get started on the 
endless PCG Game Board.

This is what our Roguelike endless PCG Game Board will look like

Data structure choice
The first PCG algorithm we will develop will create the game environment that our 
player will explore. We are going to build a game world that never ends; that is, as 
long as you have enough memory. As the player explores the world, our algorithm 
will create and place more pieces of the Game Board.

Remember, the Game Board is what we are calling the ground area in which the 
player will walk on. The Game Board is made up of small, rectangular, 2D sprites 
that we refer to as tiles. In this chapter, we will start with floor tiles, which the player 
will walk on. We will then randomly add wall tiles to a new layer as an obstacle to 
the player.

The concept of the 2D Game Board can be visualized as a grid. A grid can be easily 
implemented as an array or list data structure to track the tiles we layout for the 
Game Board. As the player explores, we will add to our list references to our newly 
created tiles. We can then use this list to look up any tile on our Game Board. The 
most important role of the tile list is such that we don't recreate a tile that is already 
on the Game Board. This process is usually referred to as object pooling.



Chapter 3

[ 35 ]

Imagine the Game Board within a grid

Array
Because we are creating a large part of the Game Board while the player is playing 
the game, we need a data structure in which we can add tiles too dynamically. A 
two-dimensional array is visualized as a grid, which makes adding tile coordinates 
more natural. We name an index of a two-dimensional array like this: myArray[X]
[Y]. X and Y will be the 2D x axis and y axis coordinates.

Dynamic is another computer science term. We refer to things as 
static or dynamic. Static refers to something that has a hard-coded 
value such as: const int num = 2;. Dynamic refers to a value 
that is determined at runtime and might change over the life of 
the program such as: int num = someFunction();.

Visualization of a 2D array



Generating an Endless World

[ 36 ]

Arrays are great for fast lookup, which will be important as our Game Board 
expands. Arrays reserve a portion of memory and assign a call number called 
an index to every block of memory in the array. This gives the array a fixed size 
guaranteeing that we won't run into memory problems when generating the world. 
Also, looking up any index in an array is nearly instant.

The main issue with using a two-dimensional array is that we have to predefine the 
size. This means that as soon as the game starts, we will reserve a large chunk of 
memory for our game that we might not use. It is even worse if we end up filling the 
array before the game is over, as then we have to make a new larger array, transfer 
all the information to the new array, and deallocate all the memory of the old array.

The larger array then faces the same two problems as described previously. This 
method also means having to spend extra development time to write the logic that 
would perform the array rewrite task. Our game might then start to slow down as 
our memory expands and contracts to make new arrays and delete old ones. This 
will still be a viable option, but perhaps with a little more careful development work.

Linked list
The 2D array has the important feature of fast look up but the implementation would 
be inefficient and it also runs the risk of creating too much overhead. So another 
option would be a list, which is a form of linked list. The list doesn't need to reserve 
a chunk of memory because each entry in the list holds a link reference to the entry 
before it and after it in the list. This means that list entries can be stored anywhere in 
the memory, which eliminates the need to reserve any memory on startup.

Visualization of a linked list



Chapter 3

[ 37 ]

The list solves the problem of having to create a new array when you run out of 
space. We can easily and continuously add to a list dynamically, as well. However, 
the fast look up will suffer slightly with lists and therefore cause the performance of 
the game to suffer. When an array is created, the structure of it is like a chart where 
each entry is adjacent to the next and the system can scan very quickly to a specified 
index. Lists, on the other hand, have entries littered throughout the memory so the 
system has to start at the first entry and follow each entry to the specified index.

One more caveat of a list is that we wouldn't be able to reference an index that we 
hadn't already filled with a tile. In our 2D array example, all of the indices of the 
array are predefined and can be referenced, even though they are empty. List entries 
don't have place holders like this. If we reference a list entry that doesn't exist, the 
system will throw an exception and most likely freeze the game if we aren't prepared 
for it. We would have to predefine all the entries in the list to circumvent this issue, 
which means a list is little better than an array at this point.

So now we are at the crossroads of choosing the lesser of two evils. In one hand, we 
have the array that needs some overhead maintenance to add tiles dynamically. On 
the other hand, we have a list that can be dynamically added to, but we are forced 
into a similar overhead to maintain our free flowing grid structure. Our ideal data 
structure can have dynamic entry additions with a fast lookup, but with none of  
the costs associated with arrays and lists. Again, this is a perfectly viable option,  
but perhaps there's another that will suit our needs better.

Dictionary
The compromise is something called a Dictionary in C#, which is a form of an 
associative array. An associative array is just a modified array to use some other data 
type like a string as the index instead of a non-negative number. The dictionary uses 
a key-value pair to store data and it can be dynamically added to and removed from. 
However, keep in mind that the dictionary will continue to take up as much memory 
as its maximum size. The dictionary key-value pair would look something like this:

Dictionary myInventory (string key, int value);
myInventory.Add("Gold", 10);
myInventory["Gold"];

The C# dictionary is a class that wraps an array. This class will notice when the 
internal array is about to become full and will perform the task of rewriting our  
data into a larger array automatically. The dictionary also has a fast lookup speed. 
Having an associative array as our data structure also benefits us by only needing  
to create a one-dimensional array instead of a two-dimensional array as in the 
previous examples.



Generating an Endless World

[ 38 ]

Because the dictionary takes a key-value pair, we can make our key a Vector2  
with our X and Y coordinates of each placed tile. This way, when we want to  
know whether a specific tile has been placed already, we can look up the X and  
Y coordinates directly. The Dictionary class has a method called Contains() 
making lookups as easy as myInventory.Contains("Gold");. This will give  
us a true/false value that we can check in an if…else or a switch statement.

Visualization of a dictionary/map

Here is a summary of our data structure choice:

•	 Array: This is a simple data structure with fast lookup but it is difficult to 
add tiles dynamically.

•	 List: This is a linked list, which can have tiles added dynamically, but will 
have slower lookup as  the list gets bigger.

•	 Dictionary: This is an associative array class with built-in array resizing and 
a fast lookup.
Even though the dictionary has a little more overhead with it's extra class 
methods, it will be the most efficient data structure for our use. It is also 
really easy to use.



Chapter 3

[ 39 ]

PCG algorithm overview
Now that we settled on our data structure for managing our Game Board grid,  
we need to design our algorithm for placing tiles. This algorithm will use two  
types of PCG. We will only create tiles that the player discovers, which is a form  
of player-triggered PCG. We will also use random numbers to dictate the look of  
the tile and to choose which floor tiles will have a wall tile placed on top.

To start our algorithm design, let's imagine and try to visualize a use case.  
We want our player to start in a small area that has already been revealed and  
added to our data structure. When the game starts, let's create a 5 x 5 grid of tiles  
for an initial Game Board. We can then place our player character in the center of  
the grid initially.

The initial Game Board grid with the player



Generating an Endless World

[ 40 ]

As the player explores, our algorithm will reveal more tiles in the direction the player 
is headed. We will refer to this as the player's line of sight. We can use any arbitrary 
number of tiles to reveal ahead of the player. Six tiles feels like a good amount, though. 
This will give us a center point on which to place the player character.

The line of sight grid squares are shaded

Every time the player moves into another tile, we will check the six tiles in front of 
the character. In order to accomplish this, we will need to track the player's position 
as a Vector2 with an X and Y coordinate. We will also need to track the direction in 
which the player is moving. With the player position and direction, we can find the 
coordinates of the six tiles in front of the player.

Revealing more tiles as the player moves right

As the player explores and returns to the areas, the six tiles spaces in the player's line 
of sight might have already been revealed and in our dictionary. So, with every step 
the player takes, we need to check each of the six lines of sight tiles to see whether the 
player has already discovered them. If we find that a tile is already in our dictionary, 
we don't want to overwrite it with a new tile because it might change its look.



Chapter 3

[ 41 ]

The tiles are iterated over to check whether they have already been discovered

When we check the player's line of sight, we will perform one of two actions on 
each tile. If the tile is undiscovered, we will add its coordinates to our dictionary, 
randomly choose a floor tile sprite to place, put it on the Game Board, and randomly 
add a wall tile on top of the floor tile. Otherwise, if the floor tile is already in our 
dictionary, we will just ignore it. We have to make sure that we are updating the 
player's position as well for this algorithm to work.

Here is a summary of our PCG algorithm:

•	 The player moves one tile in any direction
•	 Get direction where the player moved
•	 Update the coordinates of the player's position 
•	 Use the player's position to find and check the 6th line of sight tiles
•	 Add undiscovered tiles to our dictionary and place them on the Game Board
•	 Randomly add wall tiles to newly added floor tiles
•	 Ignore previously discovered tiles

Scene setup
Now that we chose a data structure and designed our algorithm, we need to set 
up our scene. At the moment, at the start of our game, the player character shows 
up in the corner of the screen with a black backdrop. The player can move in four 
directions but could potentially move off screen. The player can also move under  
the text that shows the player's health. We should fix this so that we can better see 
our PCG algorithm in action.



Generating an Endless World

[ 42 ]

Player positioning
Previously, we said that a starting grid of 5 x 5  for our initial Game Board would  
be a good metric. So let's continue with a 5 x 5 Game Board in mind. If our 5 x 5  
grid starts with the X-Y coordinate or (0,0) in the lower-left corner and (4,4) in the 
upper-right corner, then (2,2) will be the center of the grid. Select the Player prefab  
in the Hierarchy panel and set both the X and Y values to 2.

The grid will correspond with the x-y plane

Each sprite in our sprite sheet is 32 x 32 pixels. When the sprite sheet was imported, 
the Pixels to Units import setting was set to 32 pixels equals 1 Unity unit of measure. 
So our Game Board will align precisely with the Unity x-y plane. We can then build 
our Game Board around our player character starting at (0,0) in the lower-left corner. 
This same unit of measure will be used to track our player's position.

All our sprites are 32 x 32, which is 1 unit of measure

We changed the position of the player character, but that doesn't prevent the player 
from being able to walk off screen. We need a way to keep the player character in 
sight at all times. We can write a script that makes it possible for the player to only 
move as far as the screen edge but that doesn't make sense since our Game Board is 
infinite. Instead, we can have the camera move with the player.



Chapter 3

[ 43 ]

Camera following
Unity makes it easy to have a camera follow the player. There is a script in the  
Unity Standard Assets called Camera2DFollow.cs. We will simply import the  
script, which is included when you download Unity. We can then adjust the  
settings to suit our needs.

To import the script, follow these steps:

1.	 In the top menu, navigate to Assets | Import Package | 2D.
2.	 In the Importing package popup, select None to uncheck all the options.
3.	 Find and check the Camera2DFollow.cs package by navigating to the 2D | 

Scripts directory.
4.	 Click on Import.

Import settings



Generating an Endless World

[ 44 ]

You will have a Standard Assets folder added to your project. Inside the  
Standard Assets folder is 2D | Scripts | Camera2DFollow.cs. Drag and  
drop the Camera2DFollow script onto the Main Camera. Then, from the  
Hierarchy pane, drag and drop the Player prefab onto the Target field in  
the Camera2DFollow script component of the Main Camera.

We are going to change the other settings as well:

•	 Set the Damping field to 1
•	 Set the Look Ahead Factor field to 1
•	 Set the Look Ahead Return Speed field to 0.5
•	 Set the Look Ahead Move Threshold field to 0.1

The Camera 2D Follow settings screen

You are welcome to experiment with the settings. There might be another set of values 
that you think looks better. However, this setup works without being too jerky.

So now, when you start the game by pressing the play button, the Main Camera will 
snap to the player character. You can try walking around to test the camera follow 
settings. Then, after you are satisfied with how the camera follows the player, we 
will need to make some layer adjustments.

No Game Board



Chapter 3

[ 45 ]

Layers
Even though our game is 2D and takes place on only one visible plane, we can still 
place game objects on different layers to manage how things interact. So, we will add 
some layers to manage how the player interacts with their environment:

•	 Select the Player prefab from the Hierarchy panel
•	 Select the Layer field dropdown
•	 Select Add Layer… from the dropdown
•	 Add BlockingLayer, Floor, and Units as layer labels to any empty field (do 

not overwrite any existing field)
•	 Then, select the Sorting Layers dropdown on the same screen
•	 Add Floor and Units as Sorting Layer labels, in that order

These layers might have been added from the import process 
in Chapter 2, Roguelike Games but this is not guaranteed.

The Layer settings



Generating an Endless World

[ 46 ]

The layers will help us divide tiles into specific regions of interest. Game objects 
that are impassable or can prevent the player from moving will be placed on the 
BlockingLayer. The Player prefab and wall tiles will be on the BlockingLayer 
because the player should not simply be able to walk through walls.

The sorting layer is important because it will dictate which sprites are rendered first. 
We want the player character to render on top of the floor tiles. The layers at the top 
of the Sorting Layers list are rendered first. So we place the Floor layer higher in the 
list so that it is rendered before the player character.

Now, we have to select the Layer and Sorting Layer in the Sprite Renderer 
component of our Player prefab, floor tiles, and wall tiles.

For the Player prefab, follow these steps:

1.	 In the Hierarchy panel, select Player.
2.	 Select the Layer dropdown.
3.	 Select BlockingLayer.
4.	 In the Sprite Renderer component, select the Sorting Layer dropdown.
5.	 Select Units.

For the floor tiles, follow these steps:

1.	 In the Project tab, select the Prefabs folder.
2.	 Select Floor1 to Floor8 at the same time using the Shift or command key.
3.	 In the Sprite Renderer component, select the Sorting Layer dropdown.
4.	 Select Floor.

For the wall tiles, follow these steps:

1.	 In the Project tab, select the Prefabs folder.
2.	 Select Wall1 to Wall8 at the same time.
3.	 Select the Layer dropdown.
4.	 Select BlockingLayer.
5.	 In the Sprite Renderer component, select the Sorting Layer dropdown.
6.	 Select Units.



Chapter 3

[ 47 ]

Unfortunately, layers in Unity do not carry over when making 
a package of your project. The reasoning behind this is that you 
might have created some layers in your project and then imported 
a package. If the imported package brought along it's layers, it 
might overwrite some of your originally created layers. For more 
on layers, visit the Unity Docs at http://docs.unity3d.com/
Manual/Layers.html.

Initial Game Board
Now that we have our algorithm designed and the Unity Editor setup, we can start 
our code implementation. We'll approach the task in small pieces. First, let's put 
down a small starting area for our player. As stated before, we will make a 5 x 5 grid 
to lay floor tiles on. The lower-left corner will be placed at (0,0) and the upper-right 
corner at (4,4) with the player character at (2,2).

We'll start by building our BoardManager class. Open up BoardManager.cs for 
editing. Currently, there is only a public class called Count, but we are about to change 
that. Code Snip 3.1 shows the additions we want to make to BoardManager.cs:

1 using UnityEngine;
2 using System;
3 using System.Collections.Generic; 
4 using Random = UnityEngine.Random;
5
6 public class BoardManager : MonoBehaviour {
7   [Serializable]
8   public class Count {
9     public int minimum;
10    public int maximum;
11    
12    public Count (int min, int max) {
13      minimum = min;
14      maximum = max;
15    }
16  }
17
18  public int columns = 5;
19  public int rows = 5;
20  public GameObject[] floorTiles;
21  private Transform boardHolder;
22  private Dictionary<Vector2, Vector2> gridPositions = new  
    Dictionary<Vector2, Vector2> ();

http://docs.unity3d.com/Manual/Layers.html
http://docs.unity3d.com/Manual/Layers.html


Generating an Endless World

[ 48 ]

23  
24  public void BoardSetup () {
25  boardHolder = new GameObject ("Board").transform;
26    
27  for(int x = 0; x < columns; x++) {
28    for(int y = 0; y < rows; y++) {
29      gridPositions.Add(new Vector2(x,y), new Vector2(x,y));
30      
31      GameObject toInstantiate = floorTiles[Random.Range  
        (0,floorTiles.Length)];
32     
33      GameObject instance = Instantiate (toInstantiate, new  
        Vector3 (x, y, 0f), Quaternion.identity) as GameObject;
34        
35      instance.transform.SetParent (boardHolder);
36    }
37  }
38 }
39 }

So our original BoardManager class has doubled in size. Let's take a look at what  
we added:

•	 Line 18-19: Here are two public integer variables called row and column, 
which represent our starting Game Board grid.

•	 Line 20: floorTiles is a public GameObject array that will hold all the 
floor prefabs.

•	 Line 21: boardHolder is a private transform that will hold all the tiles.
•	 Line 22: gridPositions is a private dictionary, which is our chosen data 

structure to hold the list of references to every tile our game lays out.
•	 Line 24-39: BoardSetup is a public function that returns void. This function 

will create our initial Game Board and add the tile references to our dictionary.
•	 Line 27-28: This for loop nested within another for loop will iterate over 

every cell in our initial 5 x 5 grid.
•	 Line 31: toInstantiate will randomly choose a tile from our array of  

floor tiles.
•	 Line 33: instance will instantiate our randomly chosen floor tile and lay it 

at the coordinates provided by the for loops.
•	 Line 35: Finally, we make the instance of the floor tile a child of boardHolder, 

our Game Board transform.



Chapter 3

[ 49 ]

So, our Game Board is able to set up an initial 5 x 5 board, but the functionality isn't 
fully integrated yet. We need to make some adjustments to our GameManager script 
as well. We can see the changes needed in Code Snip 3.2. Keep in mind that Code Snip 
3.2 is not the full file:

7 public class GameManager : MonoBehaviour {
8
9   public float turnDelay = 0.1f;
10  public int healthPoints = 100;
11  public static GameManager instance = null;
12  [HideInInspector] public bool playersTurn = true;
13
14  private BoardManager boardScript;
15  private List<Enemy> enemies;
16  private bool enemiesMoving;
17
18  void Awake() {
19    if (instance == null)
20      instance = this;
21    else if (instance != this)
22      Destroy(gameObject);  
23    
24    DontDestroyOnLoad(gameObject);
25    
26    enemies = new List<Enemy>();
27
28    boardScript = GetComponent<BoardManager>();
29    
30    InitGame();
31  }
...
56  void InitGame() {
57    enemies.Clear();
58
59    boardScript.BoardSetup();
60 }

There's only a few key lines here to integrate the BoardManager class with the rest of 
the game. Let's see what the changes are:

•	 Line 14: boardScript is the variable we will use to keep a reference to our 
BoardManager script.

•	 Line 28: Inside the Awake function, we will have boardScript reference the 
BoardManager script that we will add to our GameManager prefab.



Generating an Endless World

[ 50 ]

•	 Line 59: Inside the InitGame function, we will call the BoardSetup function 
from our attached BoardManager script.

So, now the BoardManager script functionality will be called from the GameManager 
script. However, when you press play, there is still no Game Board. We are still 
missing a few connections, which we will need to set up in the Unity Editor.

In the Project tab, follow these steps:

1.	 Select the Prefabs folder.
2.	 Select the GameManager prefab.
3.	 In the Inspector tab, select the Add Component button.
4.	 From the Add Component dropdown, navigate to Script | BoardManager.

These steps add the BoardManager script to our GameManager prefab, but we need 
to add the floor tile references now.

In the Board Manager script component of the GameManager prefab, follow  
these steps:

1.	 Set Size under Floor Tiles to 8 and press Enter.
2.	 Then, drag and drop Floor1 to Floor8 into the newly created Element0 to 

Element7 under Floor Tiles.

Now, we can press the play button and we'll see our player character standing 
on our initial 5 x 5 Game Board. Notice that because our initial Game Board is 
procedurally generated, it is made up of a different combination of tiles every  
time we play the game. However, this isn't the end of our PCG game world.  
We want the Game Board to expand as the player explores.

Initial Game Board



Chapter 3

[ 51 ]

Connecting code
We now need to add the functionality of our expanding Game Board. As per 
our algorithm design, we need to track the player character's position. When the 
player moves, we need to send the player character's position and direction to the 
BoardManager class. So let's start with the additions needed in the Player script 
shown in Code Snip 3.3:

7 public class Player : MovingObject {
8   public int wallDamage = 1;
9   public Text healthText;
10  private Animator animator;
11  private int health;
12  public static Vector2 position;
13  
14  protected override void Start () {
15
16    animator = GetComponent<Animator>();
17    
18    health = GameManager.instance.healthPoints;
19    
20    healthText.text = "Health: " + health;
21
22    position.x = position.y = 2;
23    
24    base.Start ();
25  }
26  private void Update () {
27    if(!GameManager.instance.playersTurn) return;
28    
29    int horizontal = 0;
30    int vertical = 0;
31
32    bool canMove = false;
33    
34    horizontal = (int) (Input.GetAxisRaw ("Horizontal"));
35    vertical = (int) (Input.GetAxisRaw ("Vertical"));
36    
37    if(horizontal != 0)
38    {
39      vertical = 0;
40    }
41    if(horizontal != 0 || vertical != 0)
42    {



Generating an Endless World

[ 52 ]

43      canMove = AttemptMove<Wall> (horizontal, vertical);
44      if(canMove) {
45        position.x += horizontal;
46        position.y += vertical;
47        GameManager.instance.updateBoard(horizontal, vertical);
48      }
49    }
50  }
51
52  protected override bool AttemptMove <T> (int xDir, int yDir) {
53    bool hit = base.AttemptMove <T> (xDir, yDir);
54    
55    GameManager.instance.playersTurn = false;
56
57    return hit;
58  }

In Code Snip 3.3, we are changing some of the structure of our base code. These changes 
will force us to change how some other functions operate. So let's see the new changes 
and how they'll affect the rest of our development:

•	 Line 12: position is a public static Vector2 that will hold the current 
coordinates of our player. It is static so that we can access this variable  
from any script in the game.

•	 Line 22: We set the x and y value of position to 2 because we know that at 
the start of the game, the player character will always begin on (2,2) of our 
Game Board.

•	 Line 32: We create a Boolean variable called canMove, which will tell us 
whether the player is blocked from moving or not. We will calculate this 
value at every update so it is set to false by default. 

•	 Line 43: Here, we set canMove equal to our AttemptMove function. 
However, AttemptMove returns void so this will be something we need  
to fix coming up.

•	 Line 45-46: position is updated by adding in the values we obtain for 
horizontal and vertical. horizontal and vertical come from Input.
GetAxisRaw, which returns 1 if the player moves in the positive direction  
or -1 if the player moves in the negative direction.

•	 Line 47: We call our instance of the GameManager class and invoke the 
updateBoard function, which doesn't yet exist. We will put this here as  
a place holder and write the updateBoard function later.

•	 Line 52: We need to rewrite AttemptMove to return a bool. We will start by 
declaring that the function will return bool.



Chapter 3

[ 53 ]

•	 Line 53: We are going to create a Boolean variable to hold the bool 
that base.AttemptMove will return. This again is a place holder as 
base.AttemptMove does not yet return a bool. We also need to remove 
RaycastHit2D hit.

•	 Line 57: Return the newly created bool value.

We are using a public static variable for the player position so 
that we can access it from anywhere at anytime. It is, however, a 
best practice to make these types of values private and accessible 
through a get function. Having a variable be public static means 
it can also be changed from anywhere in the code.
This can cause problems if you have more than one person 
working on a single code base and another developer using the 
public static variable in a way you didn't intend. It is best to be 
very deliberate in your code. By forcing a variable to be private 
and only accessible via a get function, you protect the variable 
from changing in a way that it shouldn't.
With that said, we are going to use the player position as a public 
static because it is easier and makes our code less bloated. Of 
course, you are encouraged to revise the code later to make this 
variable private.

At this point, there are going to be some errors in the Unity Editor because of some 
conflicts we created. So let's work on clearing the errors. Once everything is working 
again, we can work on the new functionality.

First, we should fix our bool return value conflict in the AttemptMove function of the 
MovingObject class. Remember, MovingObject is the base class for both Player and 
Enemy. We will have to adjust the AttemptMove function in all three files, as it is a 
virtual function.

Let's start by fixing the AttemptMove function of MovingObject. Open 
MovingObject.cs for editing. Code Snip 3.4 shows the changes that need to be made 
to the file:

91 protected virtual bool AttemptMove <T> (int xDir, int yDir)
92   where T : Component
93 {
94  RaycastHit2D hit;
95    
96  bool canMove = Move (xDir, yDir, out hit);
97    
98  if(hit.transform == null)
99    return true;



Generating an Endless World

[ 54 ]

100
101 T hitComponent = hit.transform.GetComponent <T> ();
102    
103 if(!canMove && hitComponent != null)
104  OnCantMove (hitComponent);
105
106 return false;
107 }

We only need to adjust the one function within the MovingObject class. Let's take a 
look at how it changed in Code Snip 3.4:

•	 Line 91: We need to change the void return type to bool
•	 Line 99: Return the bool value as true if the player hit an object
•	 Line 106: Return false if we reached the end of the function, meaning that 

the player didn't hit anything

If you return to the Unity Editor, you should see some new errors. One will be 
complaining that the Enemy class has implemented AttemptMove incorrectly.  
So let's address this next.

Our Enemy class at the moment is only a place holder. If you remember from Chapter 
2, Roguelike Games, we are using the Enemy class as a way to dictate movement turns. 
Because our game is turn based, we need the player to wait for each visible enemy to 
move before the player can move again. The base code has implemented a scan for 
enemies, each turn using the Enemy class place holder so we won't have to do it later.

So the adjustment to the Enemy class is fairly simple. Code Snip 3.5 shows the changes:

6 protected override bool AttemptMove <T> (int xDir, int yDir)
7 {
8   return true;
9 }

The explanation for Code Snip 3.5 is equally simple. Keep in mind though that this is 
still a place holder class and we will do a full implementation later on. Let's take a 
look at the changes made:

•	 Line 6: The return type is changed from void to bool.
•	 Line 8: Return true so that we are returning the correct value at the end of 

the function. We need to return a bool value at the end of the function so the 
compiler will pass this as a nonerror. However, the bool value doesn't matter 
as it is not used yet.



Chapter 3

[ 55 ]

We are almost done mending our code. We have one more error to handle before we 
put in our expanding Game Board functionality. Returning to the Unity Editor yet 
again will reveal that we called a function (that doesn't exist) from the Player class to 
the GameManager class. We need to add the updateBoard function to the GameManager 
class  as a connection from the Player class to the BoardManager class.

Add Code Snip 3.6 at the end of your GameManager definition:

public void updateBoard (int horizantal, int vertical) {}

updateBoard is called from the Player class whenever the player makes a successful 
move. Since updateBoard is a method of the GameManager class, we can call a public 
method of the BoardManager class here. We will use this connection to develop our 
PCG Game Board functionality.

The PCG Game Board
We are all set to write the core functionality of our PCG Game Board. The goal is 
to have tiles laid out in the direction the player character walks. We designed our 
algorithm in such a way that the Game Board will expand as the player explores.

We connected our scripts so that when the player moves, the Player class will 
update the player position and send it to the GameManager class. The GameManager 
class will then call a method in the BoardManager class to update the Game Board 
and pass along the player position and direction. We now need to write the code  
that will update the Game Board based on the player position.

Let's start by adding the function that will update the Game Board in the 
BoardManager class. Open up BoardManager.cs for editing. Code Snip 3.7  
shows the function that needs to be added:

77 public void addToBoard (int horizontal, int vertical) {
78  if (horizontal == 1) {
79    //Check if tiles exist
80    int x = (int)Player.position.x;
81    int sightX = x + 2;
82    for (x += 1; x <= sightX; x++) {
83      int y = (int)Player.position.y;
84      int sightY = y + 1;
85      for (y -= 1; y <= sightY; y++) {
86        addTiles(new Vector2 (x, y));
87      }
88    }
89  } 



Generating an Endless World

[ 56 ]

90  else if (horizontal == -1) {
91    int x = (int)Player.position.x;
92    int sightX = x - 2;
93    for (x -= 1; x >= sightX; x--) {
94      int y = (int)Player.position.y;
95      int sightY = y + 1;
96      for (y -= 1; y <= sightY; y++) {
97        addTiles(new Vector2 (x, y));
98      }
99    }
100 }
101 else if (vertical == 1) {
102  int y = (int)Player.position.y;
103  int sightY = y + 2;
104  for (y += 1; y <= sightY; y++) {
105    int x = (int)Player.position.x;
106    int sightX = x + 1;
107    for (x -= 1; x <= sightX; x++) {
108      addTiles(new Vector2 (x, y));
109    }
110  }
111 }
112 else if (vertical == -1) {
113  int y = (int)Player.position.y;
114  int sightY = y - 2;
115  for (y -= 1; y >= sightY; y--) {
116    int x = (int)Player.position.x;
117    int sightX = x + 1;
118    for (x -= 1; x <= sightX; x++) {
119      addTiles(new Vector2 (x, y));
120    }
121  }
122 }
123 }

This function contains a switch driven by direction. The base code is set up to return 
only one directional value at a time. This means our player character can only move 
one direction at a time. Either the player moves horizontally in the positive or negative 
x direction forcing the vertical direction to return 0, or vice versa along the y direction.



Chapter 3

[ 57 ]

Let's take a closer look at the code:

•	 Line 77: addToBoard is a public function returning void. This will be our 
entry point from the GameManager class. From the GameManager class, we 
pass the player direction to this function as arguments.

•	 Line 78: This is our first switch point. If horizontal equals 1, then we know 
vertical is 0. This corresponds to the player moving to the right on screen.

•	 Line 80-85: We are using a for loop nested within a for loop to iterate 
over the player's line of sight. Remember the line of sight is the six tile spaces 
directly in front of the player's movement direction. The line of sight makes 
up a 2 x 3 grid.

•	 Line 86: For each tile space we iterate over, we will call the method 
addTiles and pass in the Vector2 produced by our for loops. addTiles 
does not exist yet but we will be writing it next.

•	 Line 90-122: The rest of the function is simply a variation of Lines 78-86. 
If the player did not move to the right, then we check the other directions 
and set up the line of sight for that direction.

Next, we will complete our expanding Game Board functionality by writing the 
addTiles function used in the addToBoard function you just wrote. The main 
objective of this function is to check our dictionary for the line of sight tiles and 
if they are not there, we add them. Code Snip 3.8 shows the function as part of the 
BoardManager class:

61 private void addTiles(Vector2 tileToAdd) {
62   if (!gridPositions.ContainsKey (tileToAdd)) {
63    gridPositions.Add (tileToAdd, tileToAdd);
64    GameObject toInstantiate = floorTiles [Random.Range (0,  
      floorTiles.Length)];
65    GameObject instance = Instantiate (toInstantiate, new  
      Vector3 (tileToAdd.x, tileToAdd.y, 0f), Quaternion.identity)  
      as GameObject;
66
67    instance.transform.SetParent (boardHolder);
68  }
69 }



Generating an Endless World

[ 58 ]

This code should seem familiar. We do similar calls in the BoardSetup function 
of the BoardManager class. Line 62 is the main difference. Here, we check the 
dictionary for the tile before we proceed. If the tile is in the dictionary, we return  
out of the function. This prevents us from overwriting tiles that have already been 
placed in the game.

PCG Game Board

You can now return to the Unity Editor and test the new functionality. Click on the 
play button to try it out. As per our algorithm design, whenever the player moves, 
more tiles are revealed in that direction.

This Game Board isn't very interesting, though. We can walk in a single direction 
forever with no opposition. This terrain would also make it very easy to run away 
from enemies. We should add some wall tiles for obstacles.

Let's return to editing the BoardManager.cs file. We are going to add onto our 
addTiles function by putting in a condition that adds wall tiles to newly placed 
floor tiles. Code Snip 3.9 shows the code addition:

29 public GameObject[] wallTiles;
...
62 private void addTiles(Vector2 tileToAdd) {
63  if (!gridPositions.ContainsKey (tileToAdd)) {
64    gridPositions.Add (tileToAdd, tileToAdd);
65    GameObject toInstantiate = floorTiles [Random.Range (0,  
      floorTiles.Length)];
66    GameObject instance = Instantiate (toInstantiate, new  
      Vector3 (tileToAdd.x, tileToAdd.y, 0f), Quaternion.identity)  
      as GameObject;



Chapter 3

[ 59 ]

67
68    instance.transform.SetParent (boardHolder);
69      
70      //Choose at random a wall tile to lay
71    if (Random.Range (0, 3) == 1) {
72      toInstantiate = wallTiles[Random.Range (0,wallTiles.Length)];
      instance = Instantiate (toInstantiate, new Vector3  
      (tileToAdd.x, tileToAdd.y, 0f), Quaternion.identity) as  
      GameObject;
73    instance.transform.SetParent (boardHolder);
74    }
75  }
76 }

Let's take a look at what we added in Code Snip 3.9:

•	 Line 29: Like the floor tiles, we are going to add an array of GameObject to 
hold our wall tile prefabs.

•	 Line 62-68: This is our original addTiles function.
•	 Line 71: This condition uses random numbers to create a probability.  

We randomly choose a number between 0 and 2. If the number is 1,  
then we add a wall tile to the newly created floor tile. There is a 1 in  
3 or 33 percent chance that a wall tile is added.

•	 Line 72-74: We instantiate the wall tiles as we do the floor tiles.

So, if we return to the Unity Editor and play the game, we get some errors. This is 
because we added the array for the wall tiles, but it is currently empty. You will need 
to add the wall tiles to the GameManager prefab the same way you did the floor tiles.

In the BoardManager script component of the GameManager prefab, follow these steps:

1.	 Set Size under Wall Tiles to 8 and press Enter.
2.	 Then, drag and drop Wall1 to Wall8 into the newly created Element0 to 

Element7 under Wall Tiles.



Generating an Endless World

[ 60 ]

Finally, the Game Board is fully functional! Press the play button to test it out.  
The Game Board will expand as the player explores. Every time you play the  
game, you will experience a different Game Board.

PCG Game Board plus wall tiles

With the addition of high frequency wall spawning, there are plenty of obstacles. 
These walls will also make it more difficult to run from enemies. The PCG nature  
of the Game Board makes for a unique play of the game every time.

Summary
Our Roguelike game is coming along. You completed your first PCG feature from 
design to development. However, there is still plenty left to do.

In this chapter, you learned about and analyzed a few different data structures.  
You designed an algorithm that will expand the Game Board as the player explores. 
You set up the scene so we could implement our PCG algorithm by adding layers 
and a player tracking camera feature. And finally, you implemented our algorithm 
design and created a procedurally generated game world.

There's still more game world to procedurally generate. In the next chapter, we are 
going to develop a different kind of level building. We will be creating a random 
dungeon generator. This will present a new set of PCG algorithm challenges.



[ 61 ]

Generating Random 
Dungeons

Our PCG Roguelike game is developing nicely. In the previous chapter, we produced a 
game board that expanded as the player explored the game. We are going to continue 
with the game board idea with a new type of board, the Dungeon Board. We will 
thus refer to our initial game board as the world board. The world board will be 
persistent and lead the player to instances of Dungeon Boards. Though we could add 
many different game mechanics to the world board alone, we want to learn more of 
what PCG has to offer. In this chapter, we want to explore another type of PCG level 
creation. We are going to make a random dungeon generator.

Our world board is a type of player-driven PCG. The world board reveals the pieces 
of board that the player dictates. Our dungeon generator will be system driven.  
We will develop an algorithm to completely create a whole dungeon. Using PRNs, 
we will allow randomness to dictate the shape and size of our dungeon.



Generating Random Dungeons

[ 62 ]

By not controlling too much of our dungeon generator, we should get some 
surprisingly unique and interesting dungeon designs. However, we will have to 
provide some guidelines. Random events can add fun and spontaneity, but that 
same spontaneity can be unwieldy and either overwhelm the player or cause 
problems within the system such as building paths off the defined area bounds.

Image of final result of dungeon generator

Here's what you can expect from this chapter:

•	 Learn a system-driven PCG algorithm
•	 Explore the uses of queues
•	 Manipulate PRNs to create random events
•	 Develop a random dungeon generator
•	 Return to the idea of seeding PRNs to recreate patterns

Now, let's jump into how to develop a dungeon generator.



Chapter 4

[ 63 ]

Algorithm design
In order to successfully design an algorithm for a randomly generated dungeon, we 
need to define what we mean by dungeon. In video games, a dungeon is typically an 
enclosed labyrinth-like level with a start and an end. A subgenre of games called a 
dungeon crawler gets its name from having the player complete many of these levels 
known as dungeons. Roguelike games are also known for their dungeon crawler style 
game play but with the extension that the dungeons are procedurally generated.

So our aim is to make a maze-like level layout and design. There are plenty of  
maze creating algorithms that are well defined and documented on the Internet.  
You should spend some time looking at some of these maze creation algorithms  
and trying to understand them. However, we will be writing our own algorithm  
to get the most exposure to the topic.

Algorithm overview
We can create the dungeon, much like we do the game world board. We will lay 
out tiles representing the floor for our player to walk on. However, the difference is 
that we need to enclose the dungeon board, making it finite, and contain the player 
within bounds. And thus, we can add an entrance and an exit to the dungeon level  
as the only means in and out.

The game world is generated continuously as the player explores. This won't work 
for our dungeon as it needs a start and an end. We will have to generate the entire 
dungeon at once. This isn't always the case, but this will best suit our needs for 
this task. In this respect, there is a bit of game/level design that can happen when 
developing these algorithms to achieve the look and feel you desire for the level.

There are many ways we can do this. One of the most popular ways is to place large 
sections of predefined dungeon and connect them together. However, predefining 
sections of dungeon would force us to do more art creation than coding. In your 
own projects, the choice is yours to make. But for this project, what we can do is 
use pathfinding to create a way though our dungeon, and then add procedurally 
generated sections of dungeon onto that path.



Generating Random Dungeons

[ 64 ]

The grid
Pathfinding is usually applied to a map, graph, or some other structure that  
has separated points. We think of our world board as a grid that is just a graph  
of points on the x-y plane. We can do the same with our Dungeon Board. Using  
the grid concept, we will inherently know all the points in our dungeon.

A diagram of the simple grid

We can then guide our algorithm and keep it within the bounds of the grid. So, if 
we imagine our dungeon grid as a square grid, we can pick a start point on the left 
somewhere. Then, we use some pathfinding to find its way to the right and place an 
endpoint. We can record every point the pathfinder took on the grid and place tiles 
there. The result is the start of a random dungeon.

There are some very well-defined pathfinding algorithms in computer science,  
but we will create our own for our dungeon. However, you should always research  
a new topic and find out more about it on your own. Pathfinding is an important 
part of game development and has many uses.

Note: Path-finding is used in most videos game. There are some 
situations where a character will follow a predefined path, but in 
most instances of gameplay, we need the AI to adapt to dynamic 
changes. Dijkstra's Algorithm is a basis for path finding and is studied 
in general in most computer science academic programs. A general 
search on Dijkstra's Algorithm and pathfinding will yield a wealth 
of information. Even more relevant to game development is a path 
finding algorithm called A*, which you should also research.



Chapter 4

[ 65 ]

Usually, pathfinding is meant to find the shortest/easiest path through an area  
to a destination. Because of their complexity, most pathfinding algorithms will be 
over-qualified for our task. We are looking to be a little surprised of the outcome 
ourselves, so we want to develop an algorithm that is based on randomness and  
is not so directed.

We want our pathfinder to be spontaneous because that will translate to a more 
interesting dungeon layout. We only want the dimensions of the grid to contain  
the pathfinder. However, the pathfinder will require some direction in the form  
of random probability.

Essential path
If we were to randomly lay tiles on our grid for our dungeon, we could end up with 
a dungeon that doesn't connect and has an entrance but with an inaccessible exit. So 
we can utilize as much of the grid as possible to create our entrance on the far left 
and our exit on the far right. Then, we connect the two with our pathfinder, which 
we will call the essential path.

The essential path is just that, essential. By connecting the entrance to the exit, we 
ensure our dungeon can be completed. All the points on the essential path will have 
a floor tile to make sure the path is open. We can then add to the essential path to 
expand the dungeon.

A diagram of the simplest essential path



Generating Random Dungeons

[ 66 ]

The simplest path in a grid or point system is a straight line. However, a straight line 
for a dungeon isn't very interesting. So we should guide our path from left to right 
but use some PRNs to create a probability that it veers up or down. This should give 
us a nice winding path.

A diagram of the winding essential path

Random path and chambers
Once we have created our essential path, we can add to it. This will add even more 
variety to our dungeon and ensure that no two are alike during game play. We will 
call these random branches from the essential path, random paths.

A diagram of random paths in blue

We can further add to a random path by placing a large opening at the end, which we 
will call a chamber. The chamber mimics the type of dungeon generation we spoke 
of earlier in which we predefine sections of the dungeon and place them in. However, 
instead of predefining the chambers by building them as an art asset, we will build  
the chambers procedurally. This will ensure that they will fit anywhere in our grid,  
as well as save us some memory by not having to store one or more chamber types  
as art assets.



Chapter 4

[ 67 ]

A diagram of the chamber in red

Filling in the rest of the gird
After placing the essential paths, random paths, and chambers, we will have a set  
of coordinates that refers to open space. This open space will be the floor tiles of  
the Dungeon Board. We then need to enclose the dungeon or we will be able to  
walk into the blank region of the screen.

We can easily do this but filling in the rest of the grid with tiles that the player  
cannot move on or through. These tiles are wall tiles that cannot be destroyed by  
the player. These tiles are called outer wall tiles and they were already added to  
your prefab set as of Chapter 2, Roguelike Games.

Diagram of outer wall tiles in black



Generating Random Dungeons

[ 68 ]

Also, since we are moving from the far left to the far right, we will be placing tiles  
on the very edge of the Dungeon Board grid. This will create an opening to the blank 
space onscreen. The same can happen to any random path that makes it to the end of 
the grid. So, we should wrap the entire grind in a single tile width of outer wall tiles 
to make sure the dungeon is truly closed.

A diagram of the outer wall tiles enclosing the dungeon in black

Placing the entrance and exit
Finally, we need to define how the entrance and exit are determined in the dungeon. 
Even though we are discussing this last, it will actually be the first thing the algorithm 
does. We already decided that we will be moving from left to right. From the far left of 
the grid, we can randomly select a point by varying the y coordinate. So, we know our 
entrance will have an x coordinate of 0 and a random y coordinate.

A diagram of possible starting points



Chapter 4

[ 69 ]

After defining the entrance, we can have the path build off of the starting point. 
However, the path is unpredictable and it will be difficult to try and have it connect 
with a specified end point. Instead, we can let the path-finder run its course knowing 
that it will find its way to the far right side. We will then take the point at which the 
path ends itself, that is, the exit of the dungeon.

A diagram of the placement of exit based on the path

Algorithm summary
Algorithms, like this one, can get long and complicated when trying to determine 
how and when to branch the path. To avoid complexity, we will let PRNs create a 
probability for certain outcomes. This way, we can leave the branching up to chance. 
Thus, our algorithm will be doing most of the level layout but we have some idea of 
the flow of the level based on our algorithm design. Let's summarize our algorithm:

•	 Set up the grid if we use a square grid; then, we only need to store a single 
number, which will represent all four sides, say 5 for a 5 x 5 grid.

•	 Generate the essential path from left to right, which will connect the dungeon 
entrance to the dungeon exit.
We can use a PRN here to determine the direction the path takes.

•	 Add random path branches to the essential path.
This is another opportunity to use PRNs as a  probability of a branch creation 
and also to determine the direction it takes.

•	 Fill in the rest of the grid with impassable wall tiles to enclose the dungeon, 
which is inefficient but easy. You are welcome to trim the wall tiles to only 
surround the path and are encouraged to do so.



Generating Random Dungeons

[ 70 ]

Data structures
Now that we know the instruction set of our dungeon creation, we need to figure  
out how we plan to store the dungeon board. We are building the Dungeon Board  
in a similar manner that we built the world board, so we might be able to use similar 
data structures. There are enough differences though, that we will need to evaluate 
what works best.

Back to the map
We are using a dictionary to store our world board because it has an easy and fast 
lookup method, plus it can be added to dynamically. For all those same reasons,  
we can use a dictionary to store the important points in our dungeon. Remember,  
we don't need to know every point in the dungeon, we only need to know the 
essential and random paths.

The tricky part is that we need to place the essential path first but then revisit every 
point in the path to potentially add a random branch. There is the option to iterate 
over the dictionary where we are storing our dungeon. However, we will be adding 
new points to the dictionary and will need to iterate over those as well. The reason 
being, a random branch from the essential path can continue on in its own direction.

A random path can move off in any direction and possibly circle back by itself. This 
would add two of the same entries to our dictionary but our dictionary requires 
every entry to be unique, which means we cannot have two of the same entry.  
We want to allow this circling and possible branching of already declared random 
paths because that's going to give us more possible dungeons variations.

A diagram of a path cycling back



Chapter 4

[ 71 ]

Queue
So we need a data structure that will allow identical entries but also keep track of 
where and when to branch. This is a good situation to employ a Queue. A queue is an 
array or list that we populate with entries in some order and then remove those entries 
in some order. This works for us because we can add a point into the queue that may 
branch, add the branch point, and then remove the original point so we don't revisit it. 
To do this, we will be using a queue access and processing called FIFO.

FIFO stands for first in first out. What this means is that when we add a point to the 
queue, it will go to the end of the line. The first entry in the queue will be processed 
and removed, and the next point in the list will take the first spot. This will happen 
till the list is empty. This is very similar to standing in a line at a bank.

A diagram of a queue

So, let's go over how the queue will operate for our dungeon:

•	 Once our essential path is created, we can add the points (entrance to exit)  
to the queue

•	 We will then process in FIFO
If a point randomly branches, then we will add that point to the end of  
the queue

•	 Whether the point branches or not, it will be removed from the queue and  
we will process the next point in line

•	 Eventually, we will process all of the essential path points and begin 
processing the random paths in the same manner



Generating Random Dungeons

[ 72 ]

•	 This will repeat until no more random paths have been created

Diagram of essential path in queue

Our algorithm and data structures have been finalized. We are ready to start 
implementing. We just need to set a few things up in the Unity editor before we start.

Prefab setup
There is some setup that we will need to perform in the Unity editor. We will be 
making a new prefab. We will continue adding to the Roguelike project we have been 
building from Chapters 2, Roguelike Games and Chapter 3, Generating an Endless World, 
so continue from the same project and scene.

The one thing our dungeon design lacks at the moment is a way in and a way out. 
We need to create a doorway so the player knows where they can enter a dungeon. 
Likewise, while in a dungeon, we need the same kind of door to signify an exit.



Chapter 4

[ 73 ]

An exit sign
In the sprite sheet that was initially loaded with the base code during Chapters 2, 
Roguelike Games, we have a sprite of an exit sign. We can use this same sprite as  
both an entrance to the dungeon and an exit from it to save us time. You can easily 
change the artwork later if you wish or if you are not using the base game assets,  
you can just follow along in how we build the prefab.

Image of exit tile sprite

So let's make a prefab from the exit sign art as the floor and wall tiles:

1.	 From the top menu, navigate to GameObject | Create Empty.
2.	 Select the new empty object in the Hierarchy panel.
3.	 Name the object Exit.
4.	 Add the tag Exit.
5.	 Select the Add Component button in the Inspector tab and add the Sprite 

Renderer and Box Collider 2D components.
6.	 In the Sprite field of the Sprite Renderer component, select Scavangers_

SpriteSheet_20.



Generating Random Dungeons

[ 74 ]

7.	 In the Sorting Layer field of the Sprite Renderer component, add a new 
sorting layer Items. Items should come after Floor but before Units:

An image of sorting layer order

8.	 In the Box Collider 2D component, check Is Trigger.
9.	 Drag and drop the Exit prefab from the Hierarchy panel to the Prefabs folder.
10.	 Delete the Exit prefab from the Hierarchy panel.

This completes the setup for our doorway to and from our dungeons. We will refer 
the exit tile in code as we implement the dungeon generator. We are going to build  
a new class around the dungeon generation.

DungeonManager
Our dungeon generator class will be called DungeonManager. The class will create 
the data the dungeon is made of and pass it to the BoardManager class to be built on 
screen. First, we need to create the C# script. Go to the Scripts folder and create a 
new C# script called DungeonManager.cs.

DungeonManager is a fairly large class, so we will view it in sections. Open up the 
DungeonManager for editing. You can see the first section of DungeonManager in  
Code Snip 4.1:

1 using UnityEngine;
2 using System;
3 using System.Collections.Generic;
4 using Random = UnityEngine.Random;



Chapter 4

[ 75 ]

5
6 public enum TileType {
7   essential, random, empty
8 }
9
10 public class DungeonManager : MonoBehaviour {

We are going to need a list, a dictionary, and some PRNs for our Dungeon class. 
Lines 2-4 will enable these things for our use. Lines 6-8 introduces a global 
enumeration that we will use to keep track of our path types. Then, Line 10  
leads us into the DungeonManager definition, starting with a helper class called 
PathTile that can be seen in Code Snip 4.2.

Enumerations are a great way to keep track of states. Our 
PathTile class can take on a few different states (essential and 
random) and can possibly take on more states in the future. Given 
the nature that a PathTile class can only be one state at a time, 
enumerations work like a state ID. The enumeration is really just a 
number relation, such as essential = 1 and random = 2. The 
enumeration is more descriptive though, so if we had 100 states 
we could assign names to the states rather than having to look up 
each state's ID number. For more information on enumerations, 
check out https://unity3d.com/learn/tutorials/
modules/beginner/scripting/enumerations.

11 [Serializable]
12 public class PathTile {
13   public TileType type;
14   public Vector2 position;
15   public List<Vector2> adjacentPathTiles;
16
17   public PathTile (TileType t, Vector2 p, int min, int max,  
     Dictionary<Vector2, TileType> currentTiles) {
18     type = t;
19     position = p;
20    adjacentPathTiles = getAdjacentPath(min, max, currentTiles);
21  }
22
23  public List<Vector2> getAdjacentPath(int minBound, int  
    maxBound, Dictionary<Vector2, TileType> currentTiles) {
24    List<Vector2> pathTiles = new List<Vector2> ();
25    if (position.y + 1 < maxBound &&  
      !currentTiles.ContainsKey(new Vector2(position.x,  
      position.y + 1))) {

https://unity3d.com/learn/tutorials/modules/beginner/scripting/enumerations
https://unity3d.com/learn/tutorials/modules/beginner/scripting/enumerations


Generating Random Dungeons

[ 76 ]

26      pathTiles.Add(new Vector2(position.x, position.y + 1));
27    }
28    if (position.x + 1 < maxBound &&  
      !currentTiles.ContainsKey(new Vector2(position.x + 1,  
      position.y))) {
29      pathTiles.Add(new Vector2(position.x + 1, position.y));
30    }
31    if (position.y - 1 > minBound &&  
      !currentTiles.ContainsKey(new Vector2(position.x,  
      position.y - 1))) {
32      pathTiles.Add(new Vector2(position.x, position.y - 1));
33    }
34    if (position.x - 1 >= minBound &&  
      !currentTiles.ContainsKey(new Vector2(position.x - 1,  
      position.y)) && type != TileType.essential) {
35      pathTiles.Add(new Vector2(position.x - 1, position.y));
36    }
37    return pathTiles;
38  }
39 }

The PathTile class is going to make the rest of the DungeonManager implementation 
much easier. Each PathTile will calculate and keep track of the tiles that are adjacent 
to that tile. They will also hold their own position and their type, which could be E for 
essential or R for random. Let's take a closer look at the PathTile class in Code Snip 4.2:

•	 Line 13: type will hold a TileType enum value, which will refer to the type 
of tile as TileType.essential, TileType.random, or TileType.empty.

•	 Line 14: This is the position of the tile as Vector2.
•	 Line 15: adjacentPathTiles is the list that we will use to store the tiles 

next to the current PathTile.
•	 Lines 17-21: This is the PathTile constructor. We will call this to make a 

new PathTile.
•	 Line 23: getAdjacentPath is the function that will calculate which tiles  

are adjacent to this tile based on the Dungeon Board dimensions and current 
tiles that have been laid out. We call getAdjacentPath in the constructor of 
the PathTile class and it requires the minimum and maximum bound of the 
grid, as well as the current tile list of all the tiles current laid.



Chapter 4

[ 77 ]

GetAdjacentPath uses four if statements to check adjacent tiles to the top, right, 
bottom, and left of the current PathTile. The conditional statements are based 
on whether the adjacent tile is within the grid dimensions and if the tile is already 
part of the dungeon tile list. The last if condition on Line 31 checks the type for 
TileType.essential because we don't want essential PathTiles to move left 
(backwards), we want to force them right (forwards).

So, that is our helper class that is going to make the rest of the DungeonManager 
class simpler to implement. We are ready to develop the rest of the DungeonManager 
definition. Code Snip 4.3 continues the DungeonManager class:

40 public Dictionary<Vector2, TileType> gridPositions = new  
   Dictionary<Vector2, TileType> ();
41
42  public int minBound = 0, maxBound;
43
44  public static Vector2 startPos;
45
46  public Vector2 endPos;
47
48  public void StartDungeon () {
49    gridPositions.Clear ();
50    maxBound = Random.Range (50, 101);
51
52    BuildEssentialPath ();
53
54    BuildRandomPath ();
55  }

Code Snip 4.3 shows the setup of the dungeon in the DungeonManager class. We 
declare all our variables in the first few lines, then use a driver function to generate 
separate parts of the dungeon. Let's take a look at the specifics from Code Snip 4.3:

•	 Line 40: gridPositions is the dictionary we are using to store the structure 
of the generated dungeon. This dictionary is similar to the one we used in the 
BoardManager class except our value is now TileType.

•	 Line 42: minBound and maxBound are the dimensions of our board grid. 
minBound is always 0, but we set it up as a variable just in case we decide to 
change it later. maxBound is not initialized here because it will be randomly 
initialized later.



Generating Random Dungeons

[ 78 ]

•	 Line 44: startPos is the entrance position of our dungeon. We are making it 
public static because it needs to be accessed by the Player class. The Player 
class will use the position data to move the player character to startPos,  
while the world board is being changed out for the dungeon board.

•	 Lines 48-55: StartDungeon is our driver function for our dungeon generator. 
In the function, we clear our dictionary because we will use the generator 
multiple times in a game. We then randomly choose the dimensions of the 
board grid. Our grid is a square so we only need to choose one number and 
it will represent the length of all four sides. A dungeon larger than 200 by 200 
starts to add a significant amount of load time mostly due to the fact that we 
are generating so many outer wall tiles. Lastly, we call the functions that will 
build the dungeon's essential and random paths.

Now, we need to develop the logic behind building the actual dungeon. The first 
function involved is BuildEssentialPath. Within this function, we are going to  
use a little bit of randomness and a little bit of direction to create a path that spans 
our grid from left to right. The left-most point will be our entrance and the right  
most point will be our exit. Code Snip 4.4 shows the function:

56 private void BuildEssentialPath () {
57  int randomY = Random.Range (0, maxBound + 1);
58  PathTile ePath = new PathTile (TileType.essential, new Vector2  
    (0, randomY), minBound, maxBound, gridPositions);
59  startPos = ePath.position;
60
61  int boundTracker = 0;
62
63  while (boundTracker < maxBound) {
64    gridPositions.Add (ePath.position, TileType.empty);
65    int adjacentTileCount = ePath.adjacentPathTiles.Count;
66    int randomIndex = Random.Range (0, adjacentTileCount);
67    Vector2 nextEPathPos;
68    if (adjacentTileCount > 0) {
69      nextEPathPos = ePath.adjacentPathTiles[randomIndex];
70    } else {
71      break;
72    }
73  PathTile nextEPath = new PathTile (TileType.essential,  
    nextEPathPos, minBound, maxBound, gridPositions);
74    if (nextEPath.position.x > ePath.position.x ||  
      (nextEPath.position.x == maxBound - 1 &&  
      Random.Range (0,2) == 1)) { 
75      ++boundTracker;



Chapter 4

[ 79 ]

76    }
77    ePath = nextEPath;
78  }
79
80  if (!gridPositions.ContainsKey (ePath.position))
81    gridPositions.Add (ePath.position, TileType.empty);
82
83  endPos = new Vector2 (ePath.position.x, ePath.position.y);
84 }

BuildEssentialPath is going to run a loop that can potentially loop through every 
space in our grid. It is unlikely this will happen but we need to be aware of it. This 
means that in a worst-case scenario, a 100 x 100 dungeon can cause a loop to process 
10,000 spaces, which is why any dungeon over 200 x 200 begins to load significantly 
more slowly. An important part of algorithm design is understanding what can 
happen in the worst case to gauge an average speed of execution.

It is very unlikely that we will see this worst case because our dungeon can take  
so many other forms. So let's take a look at the first step of our dungeon generator. 
We will go through Code Snip 4.4 to see how we generate an essential path:

•	 Line 57: Here, we choose a random y coordinate for our entrance. We will 
always start our entrance on the extreme left, which is minBound. In this case, 
minBound is always 0.

•	 Line 58: ePath is a container for our current PathTile. We will store the 
current essential PathTile here and add it to our Dungeon Board after we 
decide which adjacent tile to follow. Initially, we will set it to our entrance 
location.

•	 Line 59: We need to set startPos to the entrance position so we can inform 
the Player class where to move the player character.

•	 Line 61: We will use a local integer variable to track how far along the grid 
length we are. Every time the essential path moves right, we will add 1 to 
boundTracker till boundTracker equals maxBound.

•	 Lines 63-84: This while loop will loop through tile spaces in our grid.  
It will end when our essential path has reached the right side of our grid.

•	 Line 64: The first thing we do is add the current PathTile to our dictionary. 
Remember, the first PathTile is the entrance.

•	 Line 65: Here, we find out how many tiles are adjacent to the current tile.
•	 Line 66: From the adjacent tile, we randomly choose one to follow.



Generating Random Dungeons

[ 80 ]

•	 Lines 68-72: This is our first check. We need to make sure that there  
are adjacent tiles before we continue. If there are no adjacent tiles and  
we reference an empty index, we will cause an error. However, we can 
assume that if there are no adjacent tiles, then we have hit the end of the  
grid and can break the loop early.

•	 Line 73: If there are adjacent tiles, we store them as the next  
essential PathTile.

•	 Lines 74-76: This check will determine whether or not the essential path 
has moved right. If it has, then we need to update the boundTracker to 
reflect that.

•	 Line 77: At this point, we have made all the checks we need to use the 
current essential PathTile and the adjacent essential PathTile. We can  
set the adjacent tile to the current so that in the next iteration of the loop,  
it will be added to the list the process repeats.

•	 Lines 78-83: Finally, once the loop has completed all its iterations, we 
add a check to see if the final essential PathTile was added to the dungeon 
dictionary. Remember that the loop could have broken early so we may have 
not added that last tile. Then, we set the last tile to the exit position, endPos.

So, just like in our algorithm design, our essential path builds out one tile at a time 
as it follows a random path that can only move in the directions up, down, and right. 
The essential path should be fairly winding, but it will be narrow as well. What's 
more, the path only moves in one direction, which is not very interesting. So we will 
introduce some random branches from the essential path.

The BuildRandomPath function, which is called just after the BuildEssentialPath 
function, will add onto the essential path in two ways. First, it will go through the 
essential PathTiles and see if there is an open adjacent tile that can branch off into 
an alternate path. Then, it might choose to build an opening called a chamber at the 
end of that path. Code Snip 4.5 shows the implementation of BuildRandomPath:

85 private void BuildRandomPath () {
86  List<PathTile> pathQueue = new List<PathTile> ();
87  foreach (KeyValuePair<Vector2,TileType> tile in gridPositions)  
    {
88    Vector2 tilePos = new Vector2(tile.Key.x, tile.Key.y);
89    pathQueue.Add(new PathTile(TileType.random, tilePos,  
      minBound, maxBound, gridPositions));
90  }
91
92  pathQueue.ForEach (delegate (PathTile tile) {
93
94    int adjacentTileCount = tile.adjacentPathTiles.Count;



Chapter 4

[ 81 ]

95    if (adjacentTileCount != 0) {
96      if (Random.Range(0, 5) == 1) {
97        BuildRandomChamber (tile);
98      }
99      else if (Random.Range (0, 5) == 1 || (tile.type ==  
        TileType.random && adjacentTileCount > 1)) {
100        int randomIndex = Random.Range (0, adjacentTileCount);
101
102        Vector2 newRPathPos =  
           tile.adjacentPathTiles[randomIndex];
103
104        if (!gridPositions.ContainsKey(newRPathPos)) {
105          gridPositions.Add (newRPathPos, TileType.empty);
106
107          PathTile newRPath = new PathTile (TileType.random,  
             newRPathPos, minBound, maxBound, gridPositions);
108          pathQueue.Add (newRPath);
109        }
110      }
111    }
112  });
113 }

BuildRandomPath will introduce the use of the queue we discussed in our algorithm 
design earlier in this chapter. This queue will be used to take a copy of the essential 
path so that we can iterate over it. As we iterate over the queue and process the items, 
we will add new random PathTiles to the end of the queue. Once the queue is empty, 
our dungeon is complete. So let's take a look at how BuildRandomPath works:

•	 Line 86: We are going to use a list as our queue because it is easy to  
add to the end and remove from the front of the list.

•	 Lines 87-89: Using a foreach loop, we copy the essential path to  
the pathQueue.

•	 Lines 92-113: Now, we use a foreach loop on our queue and start 
processing PathTiles.

•	 Lines 94-95: We need to check if the current tile has any adjacent tiles.
•	 Lines 96-98: This check creates a 1 in 5 chance that the tile will become  

a chamber. We have a separate function that will build chambers.
•	 Line 99: Random paths generate randomly, meaning, there is a chance they 

won't generate at all. This check creates another 1 in 5 chance that a path will 
generate from an essential PathTile. However, if the current tile is a random 
PathTile and it has more than one direction to move, it will continue to 
develop. This just makes the random paths a little more wild.



Generating Random Dungeons

[ 82 ]

•	 Lines 102-108: If a random PathTile is to be placed, we check to make 
sure it isn't already part of the dungeon. We then add the new random 
PathTile to gridPositions and to the end of the queue. Eventually, the 
queue will come to this newly added PathTile and process it as well.

Eventually, probability or the size restriction of our grid will make it so that no  
new random PathTiles are added to the queue. Once the queue runs out of tiles  
to process the function terminates. We are left with a dictionary full of tile positions. 
But before that, we have to see how the BuildRandomChamber function works in  
Code Snip 4.6:

114 private void BuildRandomChamber (PathTile tile) {
115  int chamberSize = 3,
116    adjacentTileCount = tile.adjacentPathTiles.Count,
117    randomIndex = Random.Range (0, adjacentTileCount);
118  Vector2 chamberOrigin = tile.adjacentPathTiles[randomIndex];
119
120  for (int x = (int) chamberOrigin.x; x < chamberOrigin.x +  
     chamberSize; x++) {
121    for (int y = (int) chamberOrigin.y; y < chamberOrigin.y +  
       chamberSize; y++) {
122      Vector2 chamberTilePos = new Vector2 (x, y);
123      if (!gridPositions.ContainsKey(chamberTilePos) &&  
         chamberTilePos.x < maxBound && chamberTilePos.x > 0 &&  
         chamberTilePos.y < maxBound && chamberTilePos.y > 0)
124
125        gridPositions.Add (chamberTilePos, TileType.empty);
126    }
127  }
127 }

The BuildRandomChamber function is called in the BuildRandomPath function. This 
function is much like the type of PCG dungeon generation in which you connect 
some number of predefined level assets. In this case, we add a 3 x 3 chamber to 
the end of a random path. We could have made that 3 x 3 chamber a prefab, which 
would have been less code but more storage the game would need more storage. 
Instead, we generate it at runtime. Let's see how in Code Snip 4.6:

•	 Line 114-118: We pass in the current PathTile that we are processing 
from the queue. We set the size of the chamber to 3 but this can easily be 
randomized. Next, we randomly choose an adjacent tile and set that as the 
origin of the chamber.



Chapter 4

[ 83 ]

•	 Lines 120-130: Knowing the origin point and size of the chamber, we can 
loop through the tiles we need to add. This is very similar to the line of sight 
algorithm we used to reveal the world board in the previous chapter. At the 
end, we add the new tiles to the dictionary.

At this point, all of our dungeon coordinates have been generated and stored. 
We need to actually lay the floor and wall tiles now so that the player can see the 
dungeon onscreen and interact with it. We are going to use the BoardManager class 
for this.

BoardManager
The BoardManager class already keeps references to the floor and wall tiles. Rather 
than having our DungeonManager class keep the same references, we will send our 
dungeon dictionary to the BoardManager class and have it build the Dungeon Board. 
We will need to update our BoardManager class for this. Open up BoardManager.cs 
for editing and make the changes seen in Code Snip 4.7:

29 public GameObject exit;
…
33 public GameObject[] outerWallTiles;
… 
40 private Transform dungeonBoardHolder;
41 private Dictionary<Vector2, Vector2> dungeonGridPositions;
…
69 private void addTiles(Vector2 tileToAdd) {
70    if (!gridPositions.ContainsKey (tileToAdd)) {
71      gridPositions.Add (tileToAdd, tileToAdd);
72      GameObject toInstantiate = floorTiles [Random.Range (0,  
        floorTiles.Length)];
73      GameObject instance = Instantiate (toInstantiate, new  
        Vector3 (tileToAdd.x, tileToAdd.y, 0f),  
        Quaternion.identity) as GameObject;
74      instance.transform.SetParent (boardHolder);
75      
76      if (Random.Range (0, 3) == 1) {
77        toInstantiate = wallTiles[Random.Range  
          (0,wallTiles.Length)];
78        instance = Instantiate (toInstantiate, new Vector3  
          (tileToAdd.x, tileToAdd.y, 0f), Quaternion.identity) as  
          GameObject;
79        instance.transform.SetParent (boardHolder);
80      }
81
82      if (Random.Range (0, 100) == 1) {



Generating Random Dungeons

[ 84 ]

83        toInstantiate = exit;
84        instance = Instantiate (toInstantiate, new Vector3  
          (tileToAdd.x, tileToAdd.y, 0f), Quaternion.identity) as  
          GameObject;
85        instance.transform.SetParent (boardHolder);
86      }
87    }
88  }
…
141 public void SetDungeonBoard (Dictionary<Vector2,TileType>  
    dungeonTiles, int bound, Vector2 endPos) {
142    boardHolder.gameObject.SetActive (false);
143    dungeonBoardHolder = new GameObject ("Dungeon").transform;
144    GameObject toInstantiate, instance;
145 
146    foreach(KeyValuePair<Vector2,TileType> tile in  
       dungeonTiles) {
147      toInstantiate = floorTiles [Random.Range (0,  
         floorTiles.Length)];
148      instance = Instantiate (toInstantiate, new Vector3  
         (tile.Key.x, tile.Key.y, 0f), Quaternion.identity) as  
         GameObject;
149      instance.transform.SetParent (dungeonBoardHolder);
150    }
151
152    for (int x = -1; x < bound + 1; x++) {
153      for (int y = -1; y < bound + 1; y++) {
154        if (!dungeonTiles.ContainsKey(new Vector2(x, y))) {
155          toInstantiate = outerWallTiels [Random.Range (0,  
             outerWallTiles.Length)];
156          instance = Instantiate (toInstantiate, new Vector3  
             (x, y, 0f), Quaternion.identity) as GameObject;
157          instance.transform.SetParent (dungeonBoardHolder);
158        }
159      }
160    }
161
162    toInstantiate = exit;
163    instance = Instantiate (toInstantiate, new Vector3  
       (endPos.x, endPos.y, 0f), Quaternion.identity) as  
       GameObject;
164    instance.transform.SetParent (dungeonBoardHolder);
165  }
166
167  public void SetWorldBoard () {



Chapter 4

[ 85 ]

168    Destroy (dungeonBoardHolder.gameObject);
169    boardHolder.gameObject.SetActive (true);
170  }

Keep in mind that the printed line number of Code Snip 4.7 might not match 
perfectly with the code in your BoardManager.cs file. They should be close 
though. We will go over the relative position of the code in Code Snip 4.7 as  
part of the following explanation:

•	 Line 29: exit is the the exit tile sprite that we are using as our dungeon 
entrance and exit marker. This should be placed near the other tile references.

•	 Line 33: outerWallTiles are the impassable wall tiles we will use to 
enclose our dungeon. This line should be placed somewhere near the  
other tile references.

•	 Line 40-41: We are going to use a separate transform and dictionary for the 
dungeon. This will prevent any cross over between the world board and the 
Dungeon Board as they will exist in the same scene. These lines should be 
placed near the world board transform and dictionary.

•	 Lines 69-88: The addTiles function was already declared, but we will be 
adding Lines 82-86.

•	 Lines 82-86: This small addition creates a probability that for every  
1 in 100 tiles that are revealed on the world board, there will be an exit 
tile spawned. This exit tile would then act as an entrance to a randomly 
generated dungeon. You can change how frequently the exit tiles spawn  
by changing the Random.Range.

•	 Lines 141-165: The function SetDungeonBoard is a new addition to our 
BoardManager class. This function will take the dungeon data and apply  
the on screen graphics.

•	 Line 142: Instead of changing the scene, we will set the world board as 
inactive so that it is removed from the screen. Then, our Dungeon Board  
will be active and shown instead.

•	 Line 143-149: The dungeon coordinates are passed in as an argument.  
We can use a foreach loop to iterate over them and place the corresponding 
sprites.

•	 Lines 152-160: This nested for loop will traverse the perimeter of the 
dungeon and place a layer of outer wall tiles to enclose the dungeon.  
We will also fill in the empty space of the grid in this nested for loop  
with more outer wall tiles.

•	 Lines 162-164: Lastly, for the SetDungeonBoard function, we place the  
exit tiles on the endPos of our dungeon data.



Generating Random Dungeons

[ 86 ]

•	 Lines 167-170: After exiting a dungeon, we want to reactivate the world 
board. We do that in these lines while destroying the old Dungeon Board so 
that it doesn't continue to take up space on our system.

So with these few updates to the BoardManager class, we were able to build and 
show an entered dungeon, set an entrance to the dungeon from the world board,  
and reactivate the world board by exiting the Dungeon Board. The Player class is 
going to need some updates as well. We are now placing an exit tile that will have  
a specific interaction with the player.

Player
The Player class has to interact with the exit tile, which represents the entrance and 
exit of our dungeons. The player character also has to be transported to the Dungeon 
Board when the player moves to an exit tile. There are some subtleties to this, since 
we are not actually changing the scene. Code Snip 4.8 shows the updates the Player 
class requires:

14 public bool onWorldBoard;
15 public bool dungeonTransition;
…
19 protected override void Start () {
20  animator = GetComponent<Animator>();
21    
22  health = GameManager.instance.healthPoints;
23    
24  healthText.text = "Health: " + health;
25
26  position.x = position.y = 2;27
27
28  onWorldBoard = true;
29  dungeonTransition = false;
30
31  base.Start ();
32}
…
40 private void Update ()
…
63    if(horizontal != 0 || vertical != 0) {
64    if (!dungeonTransition) {
65    canMove = AttemptMove<Wall> (horizontal, vertical);
66    if(canMove && onWorldBoard) {
67    position.x += horizontal;



Chapter 4

[ 87 ]

68    position.y += vertical;
69    GameManager.instance.updateBoard(horizontal, vertical);
70    }
71      }
72   }
…
137 private void GoDungeonPortal () {
138  if (onWorldBoard) {
139    onWorldBoard = false;
140    GameManager.instance.enterDungeon();
141    transform.position = DungeonManager.startPos;
142  } else {
143    onWorldBoard = true;
144    GameManager.instance.exitDungeon();
145    transform.position = position;
146  }
147 }
148  
149 private void OnTriggerEnter2D (Collider2D other) {
150   if (other.tag == "Exit") {
151     dungeonTransition = true;
152     Invoke("GoDungeonPortal", 0.5f);
153     Destroy (other.gameObject);
154  }
155 }

Let's see how the changes connect with our dungeon generator:

•	 Lines 14-15: We are adding a couple of Boolean variables because we will 
need to switch some things on and off. onWorldBoard will let us know if we 
are on the world board, which will determine whether we track our position 
or not. dungeonTransition will let us know if we need to switch off our 
movement for a second, so we can transition to the dungeon entrance.

•	 Lines 28-29: Inside the Start function, we will initialize our new Boolean 
variables. We set onWorldBoard to true because we start on the world 
board. We set dungeonTransition to false because we don't initially  
begin transitioning to a dungeon.

•	 Line 64: We need to add a condition that when we are in transition to 
a dungeon entrance, we need to turn off movement. If we don't disable 
movement, then the player might try to continue to input movement.  
If half a movement is registered during the transition to a dungeon,  
it will cause some unusual behavior as the movement algorithm is  
now operating on an unintentional offset.



Generating Random Dungeons

[ 88 ]

•	 Line 65: onWolrdBoard gets added to the movement conditional. Both the 
world board and Dungeon Board will exist simultaneously. If we don't turn 
off the player position tracking, we will reveal sections of the world board 
while in the dungeon.

•	 Lines 137-147: GoDungeonPortal is a two way function that manages the 
effect of the player interacting with the exit Tile. If the player is on the world 
board, then they enter a dungeon. If the player is in a dungeon, then they are 
sent back to the world board. Because we stop tracking player movement in 
a dungeon, we can send the player back to the world board position at which 
we transitioned to the dungeon.

•	 Lines 149-155: This is an override of a Unity built-in function. The exit tile 
has a Box Collider 2D that acts as a trigger. The OnTriggerEnter2D function 
will check if we hit an exit tile and begin the transition to the dungeon. We 
need to use Invoke to create a delay in the transition to match our movement 
delay. We then destroy the exit tile so we can't reactivate it.

At this point, the DungeonManager, BoardManager, and Player classes are all ready 
to interact with one another. We need to create a connection point for the information 
to be transferred between the classes. We will use the GameManager class for this task.

GameManager
There are some small updates that we need to add to the GameManager class so that 
we can connect the Dungeon Board data to the BoardManager and Player classes. 
The GameManager class will use some driver functions to pass information to and 
from the different classes and initiate the dungeon generation. The update is shown 
in Code Snip 4.9:

16 private DungeonManager dungeonScript;
17 private Player playerScript;
…
22 void Awake() {
23  if (instance == null)
24    instance = this;
25  else if (instance != this)
26    Destroy(gameObject);
27    
28  DontDestroyOnLoad(gameObject);
29    
30  enemies = new List<Enemy>();
31
32  boardScript = GetComponent<BoardManager> ();



Chapter 4

[ 89 ]

33
34  dungeonScript = GetComponent<DungeonManager> ();
35  playerScript = GameObject.FindGameObjectWithTag  
    ("Player").GetComponent<Player> ();
36    
37  InitGame();
38 }
…
116 public void enterDungeon () {
117   dungeonScript.StartDungeon ();
118   boardScript.SetDungeonBoard (dungeonScript.gridPositions,  
      dungeonScript.maxBound, dungeonScript.endPos);
119   playerScript.dungeonTransition = false;
120 }
121
122 public void exitDungeon () {
123   boardScript.SetWorldBoard ();
124   playerScript.dungeonTransition = false;
125 }

These updates allow for some communication between the Player, DungeonManager, 
and BoardManager classes. Let's see how:

•	 Lines 16-17: We should add a reference to the Player and DungeonManager 
classes, so that we can exchange information and communication between 
them.

•	 Lines 34-35: Inside the Awake function, we initialize the boardScript and 
playerScript variables.

•	 Lines 116-120: The enterDungeon function drives the dungeon generation 
process. We call the function to generate the dungeon data then pass it to the 
BoardManager class to place the dungeon onscreen. We have to notify the 
Player class that the dungeon transition has occurred.

•	 Lines 122-125: The enterDungeon function drives the return to the world 
board. It calls the SetWorldBoard function from the BoardManager class and 
informs the Player class that the transition is over.

This completes all the code updates needed to fully implement our dungeon 
generator feature. It is almost time to see our creation in action. However, there are 
now some new parts that need our attention back in the Unity Editor.



Generating Random Dungeons

[ 90 ]

Back to the Unity Editor
In the GameManager prefab, we now have an array section for outer wall tiles. 
We will first need to set this up to reference the three different outer wall tiles that 
should already be in your Prefabs folder. You can add them by following these steps:

1.	 Select the GameManager prefab in the Prefabs folder.
2.	 Select the Size field under the Outer Wall Tiles section of the Board 

Manager component,  set it to 3 and press Enter.
3.	 Drag and drop the outer wall tiles to the newly created outer wall tiles 

element fields.

We then need to add the DungeonManager script to the GameManager prefab. You can 
do that by following these steps:

1.	 Select the GameManager prefab in the Prefabs folder.
2.	 Click on the Add Component button under Scripts | DungeonManager.cs.

New options in the GameManager prefab

You have just completed the dungeon generator feature implementation. You  
can press the play button and give it a try. Once you have found a dungeon and 
entered it, you can press the pause button and view the entire dungeon in the  
Scene viewport.



Chapter 4

[ 91 ]

Image of dungeon overview

There is one last thing to discuss before the chapter is officially closed. Currently, 
we enter a dungeon and then destroy that dungeon upon exiting. We do this to save 
space, but it means our dungeon is gone and it would be unlikely that our dungeon 
generator will ever make the same dungeon twice. This is where seeds come in.

Seeding the dungeon
We can set a seed value for any dungeon to recreate that dungeon. There is a simple 
way to test this as well. In the DungeonManager.cs file, add the line Random.seed = 
1; to the top of the definition of the StartDungeon function.

Now return to the Unity Editor and play the game. Enter a dungeon and take a 
screenshot of the overview. Then, end the game and play again. Enter a dungeon  
and compare its overview to that of the screenshot. You will see that they have the 
exact same shape.

This is how we can destroy an entire randomly generated dungeon, yet return to it 
at a later time. You can adapt this line of code for situations such as having a player 
return to a dungeon to complete a task. For now, you can comment this line out 
because we won't be using it for our game, but feel free to experiment.



Generating Random Dungeons

[ 92 ]

Challenge
Recall our BuildEssentialPath function. If you decided to research the A* path-
finding algorithm, you might have noticed that the BuildEssentialPath function 
is close to A*. As a challenge, you should replace our path-finding algorithm with an 
A* variant, as it will be far more efficient. Also, if you trim the outer wall tiles to only 
surround the path of the dungeon, you will decrease the load time and be able to 
make larger dungeons faster.

Summary
Our Roguelike game is developing into an ever more interesting adventure. With the 
addition of our PCG dungeon generator, we are ready to do some dungeon crawling. 
There was quite a bit that we went over in this chapter, so let's summarize what we 
covered.

You designed a PCG dungeon generator that doesn't rely on player input like the 
world board. You learned how to effectively utilize a queue to process our Dungeon 
Board data. You developed a dungeon generator capable of utilizing both random 
paths and larger level asset placement. Finally, you got to see firsthand how to 
recreate a previously generated dungeon by seeding the PRN generator.

This concludes our level generation portion of the game. You have all you need to 
expand and adapt the code for a truly expansive and uniquely interesting game 
world. Take some time to experiment with the world board and Dungeon Board  
to see what you come up with. Now, our player needs some items and weapons  
to prepare himself for the coming enemies.

We are going to look at placing items in our world. Of course, these items will be 
random in nature, but they will play a role in how difficult the game becomes later 
on. We have a lot going on in our game world as well, so we need to be a little more 
precise in how we deliver items to the player; all of this and more in the next chapter.



[ 93 ]

Randomized Items
Items in a game usually make up a considerable amount of content, especially in 
games where collecting loot is the main objective. We can use PCG to help us vary 
our content so that we don't have to create an overly large library of art assets. It is 
common in games that have a lot of content to use the same 3D model or sprite for 
two different items and just change the color or texture.

In this chapter, we are going to add items that our player can use to give them an 
advantage in the game. We will be adding both health items and items that can be 
stored in the player's inventory that will give the player bonus effects, such as damage 
and defense. We will randomize the values and use different colors to represent the 
strength of the item. This way, we can use the same sprite to represent several different 
item types. Here is a quick overview of what you will learn in this chapter:

•	 Designing a method to deliver items to the player
•	 Designing a method to randomly place items within the world and  

Dungeon Boards
•	 Using guided PRNs to determine the item's strength
•	 Learning to manipulate the color of a sprite so that it can be reused as  

several different items
•	 Creating a simple inventory

Content like items do need some sort of basis. This is usually a 3D model without 
a texture or a sprite drawn in gray-scale. We can then add the texture or color 
programmatically. It is possible to create sprites and 3D models programmatically as 
well, but this is very difficult if the model or sprite is complex or needs to be animated. 
Also, the 3D model or sprite might never quite match your game theme in the way a 
human designed art asset could.



Randomized Items

[ 94 ]

With this caveat in mind, we will be doing a little art asset creation in this chapter. 
Another sprite sheet will be provided in the exercise files in the Chapter 5 folder. 
However, feel free to create your own art base for color manipulation. We will go 
over the import method needed to get our new art assets in our game.

Generating health items in the  
game world
Eventually, our player will be fighting for survival against an onslaught of baddies. 
It is inevitable that the player will take some health damage, so we need to provide a 
way for him or her to recover and continue playing. Providing the player with health 
recovery items is the most common approach. So, we will do just that but as usual 
we want to procedurally generate the items.

Rather than just randomly laying our health item tiles about the world board, we can 
use the environment we have created to add a layer of interactivity. The wall tiles that 
inhabit the world board are already laid at random. They are also destructible. We can, 
thus, use the wall tiles as a potential container for our health items.

By doing this, we have added a layer of game play for the player. The player now 
has to forage for their health items while confronted by foes. This should add to  
the suspense, difficulty, and reward factors, which contribute to the overall fun  
of the game.

Implementing health item generation
With our first feature, health item generation, we have three tasks ahead of us:

•	 Modifying the Wall script
•	 Setting up sprites
•	 Interacting with health items

The first thing we have to do is modify our Wall script for the added functionality. 
The Wall script was written with the intention that the player would be able to 
destroy wall tiles. All we have to do is add a condition to the destruction of the wall 
that will spawn a food item. Food items will be our health items in this game. Open 
up Wall.cs for editing and take a look at the changes made to it in Code Snip 5.1:

1 using UnityEngine;
2 using System.Collections;



Chapter 5

[ 95 ]

3 using Random = UnityEngine.Random;
4
5 public class Wall : MonoBehaviour {
6   public Sprite dmgSprite;
7   public int hp = 3;
8   public GameObject[] foodTiles;
9
10  private SpriteRenderer spriteRenderer;
11
12  void Awake () {
13    spriteRenderer = GetComponent<SpriteRenderer> ();
14  }
15
16  public void DamageWall (int loss) {
17
18    spriteRenderer.sprite = dmgSprite;
19    hp -= loss;
20
21    if (hp <= 0) {
22      if (Random.Range (0,5) == 1) {
23        GameObject toInstantiate = foodTiles [Random.Range (0,  
          foodTiles.Length)];
24        GameObject instance = Instantiate (toInstantiate, new  
          Vector3 (transform.position.x, transform.position.y,  
          0f), Quaternion.identity) as GameObject;
25        instance.transform.SetParent (transform.parent);
26      }
27
28      gameObject.SetActive (false);
29    }
30  }
31 }

Code Snip 5.1 shows Wall.cs with the necessary changes. Let's see what was done:

•	 Line 3: We set Random to be the UnityEngine.Random library as we have 
done before. Remember that there are two random libraries, one is the C# 
language built-in and the other is the Unity built-in.

•	 Line 8: We are going to add a GameObject array to hold the two different 
food item tiles. We use the same technique in our BoardManager class with 
the other tile types.



Randomized Items

[ 96 ]

•	 Lines 22-26: This is the wall destruction condition. Given a certain 
probability dictated by a PRN value, we set a food tile in place of the  
wall tile. The actual instantiation of the food tile is the same technique  
we use in the BoardManager class.

This is a fairly quick and easy adjustment to the Wall class to make it yield food items. 
At this point, we are potentially creating a paradigm by making destructible objects 
that will produce items for the player. It might be a good idea to make a base class that 
controls the general functionality of the Wall class and any class like the wall. This was 
done for the Player class inheriting the MovingObject class because we anticipate a 
similar Enemy class. This base class creation will be left up to you, though.

Setting up sprites
In order to have our food items appear on screen, we need to set up their sprites.  
Go back to the Unity Editor. We are going to make two more prefabs represent the 
food items:

1.	 From the top menu, navigate to GameObject | Create Empty.
2.	 Select the new empty object in the Hierarchy panel.
3.	 Name the object Food.
4.	 Set Layer to Items.
5.	 Add the tag Food.
6.	 Click on the Add Component button in the Inspector tab and add a Sprite 

Renderer and a Box Collider 2D.
7.	 In the Sprite field of the Sprite Renderer component, select Scavangers_

SpriteSheet_19.
8.	 In the Sorting Layer field of the Sprite Renderer component, set Sorting 

Layer to Items.



Chapter 5

[ 97 ]

9.	 In the Box Collider 2D component, check the Is Trigger checkbox.

Food item setting

You can drag and drop the new Food prefab into the Prefabs folder and delete it 
from the Hierarchy panel. You are going to do the same thing for the second food 
prefab, which we will call Soda. However, for step 3, name the GameObject Soda, 
and set the tag to Soda as well. Use the Scavangers_SpriteSheet_18 file in step 7  
for your sprite.



Randomized Items

[ 98 ]

We now have to add the food items to the Wall prefabs. Select all 8 Wall prefabs so 
that we can edit them at the same time. Under the Food Tiles array field, set the size 
to 2. Then, drag and drop the Food and Soda prefabs into the newly created element 
slots and delete the Food and Soda prefabs from the Hierarchy panel.

Health item appears when a wall is destroyed

If you play the game now, our health items should be active. Try destroying some 
wall tiles to produce some health items. You will notice that we can't actually interact 
with the items yet. We need to make another adjustment in our code that will allow 
the player to pick up the health item. This will be done in the Player.cs file, and 
Code Snip 5.2 shows the changes:

134 private void UpdateHealth (Collider2D item) {
135  if (health < 100) {
136    if (item.tag == "Food") {
137      health += Random.Range (1,4);
138    } else {
139      health += Random.Range (4,11);
140    }
141    GameManager.instance.healthPoints = health;
142    healthText.text = "Health: " + health;
143  }
144 }
145 private void OnTriggerEnter2D (Collider2D other) {
146  if (other.tag == "Exit") {
147    dungeonTransition = true;
148    Invoke ("GoDungeonPortal", 0.5f);



Chapter 5

[ 99 ]

149    Destroy (other.gameObject);
150  } else if (other.tag == "Food" || other.tag == "Soda") {
151    UpdateHealth(other);
152    Destroy (other.gameObject);
153  }
154 }

The changes needed in the Player.cs file come at the end of the file. We need 
a function that will update our player health, and then we need to update the 
OnTriggerEnter2D method so that we can interact with health items. Let's take  
a look at how the functions work:

•	 Lines 134-144: UpdateHealth will update our health value that is 
displayed at the bottom of the screen in game play. It takes a Collider2D 
that we will pass in from the OnTriggerEnter2D function.

•	 Line 135: We don't want to exceed our maximum health so we will need  
to make sure we are under 100.

•	 Line 136-140: We check to see if the item is Food or Soda. We will say that 
Soda provides more health than Food. But in the PCG fashion, we will let 
PRNs dictate the specific value of health we gain from the health items.

•	 Line 141-142: Here, we make adjustments to the health value that the 
player sees.

•	 Lines 145-154: The OnTriggerEnter2D function was used in the previous 
chapter to make it possible for the player to enter a dungeon.

•	 Line 150-153: We added another tag check to detect a collision with 
Food or Soda. If we hit a health item, we are going to call our newly added 
UpdateHealth function.

You can return to the Unity Editor to test the new health item functionality. First, you 
will want to set your health below 100. You can do this by selecting the GameManager 
prefab in the Prefabs folder and setting Health Points to some value less than 100.

Where to find and set health points

Now, you can play the game. Destroy some walls to produce some health items. When 
you walk over the health item, you will see the health value onscreen increase. This will 
aid the player in surviving in the game. Adding health items was an almost easy task, 
but it gave us some insight on how we might approach our next item addition.



Randomized Items

[ 100 ]

Generating items in the dungeon
Usually in RPG games, the player will acquire and carry items that add some status 
boosting effects. The player can have weapons to increase their damage or armor to 
increase their defense. We are going to add some armor items that will power up  
our player.

The armor items will run on a slightly more complicated system than the health 
items and will require their own class. We will also need a way to deliver the items 
to the player. We want to be a little more interesting than just littering the dungeon 
floor with items, so we will create a chest that will randomly spawn items.

The Chest prefab
Let's start with the Chest prefab. The Chest prefab will be a lot like the Wall prefab, 
in that the Chest prefab will also spawn items upon iteration. We will begin by 
building the prefab.

This chapter includes some additional art assets that can be imported for the Chest 
prefab and armor items. You are welcome to take this opportunity to make your  
own art for this part. You can find the provided sprite sheet in the exercise files  
in the Chapter 5 folder. 

We will now go over the whole import process:

1.	 In Projects, select the Sprites folder.
2.	 Right-click either on the folder icon or anywhere in the folder.
3.	 From the right-click menu, select Import New Asset….
4.	 Navigate to and select the Items_Sprite_Sheet.png file or your sprite sheet.

You now have a new unformatted sprite sheet available in the Sprites folder. We 
want to match the setting of the previous sprite sheet. Select the Items_Sprite_Sheet.
png file so that we can view it's settings in the Inspector tab, and follow these steps:

1.	 Set Sprite Mode to Multiple.
2.	 Set Pixels Per Unit to 32.
3.	 Set Filter Mode to Point.



Chapter 5

[ 101 ]

4.	 Set Max Size to 1024.
5.	 Set Format to Truecolor.
6.	 Click on Apply.

Imported sprite sheet settings

Now, we need to set up the slicing of the image. While Items_Sprite_Sheet.png is 
still selected, find and click on the Sprite Editor button. Here, we can make sure that 
our sprites are properly sized.

For each sprite:

1.	 Select a sprite. You will notice a blue bounding box around the selected sprite.



Randomized Items

[ 102 ]

2.	 Set both, the width (W) and height (H) to 32. You might need to move the 
bounding box to accept a width and height of 32.

Sprite Editor

You can then click on Apply in the upper-right corner of the Sprite Editor. Exit 
the Sprite Editor. If the sprite sheet hasn't expanded in the Sprites folder, you can 
click on the white arrow on the side of the sprite to expand it. You can then inspect 
the individual sprites and make sure their dimensions are correct. Before we start 
coding, we are going to create the Chest prefab:

1.	 From the top menu, navigate to GameObject | Create Empty.
2.	 Select the new empty object in the Hierarchy panel.
3.	 Name the object Chest.
4.	 Set Layer to BlockingLayer.
5.	 Click on the Add Component button in the Inspector tab and add Sprite 

Renderer and Box Collider 2D components.
6.	 In the Sprite field of the Sprite Renderer component, select Items_Sprite_

Sheet_0.



Chapter 5

[ 103 ]

7.	 In the Sorting Layer field of the Sprite Renderer component, set the Sorting 
Layer field to Units.

8.	 Drag and drop the new Chest prefab into the Prefabs folder and delete it 
from the Hierarchy panel.

Chest implementation
We are ready to start coding the functionality of the chest. As stated previously in the 
chapter, the chest code is very similar to the wall code. It would be a better practice 
to make a base class that the chest and wall can inherit from but we are going to take 
the lazy route. You should challenge yourself to make this base class on your own.

We will be making a new class for the chest, so inside the Scripts folder, right-click 
and select Create | C# Script and name it Chest.cs. You can then open the Chest.cs 
script for editing. Code Snip 5.3 shows the whole class definition:

1 using UnityEngine;
2 using System.Collections;
3 
4 public class Chest : MonoBehaviour {
5 
6  public Sprite openSprite;
7 //  public Item randomItem;
8  
9  private SpriteRenderer spriteRenderer;
10
11  void Awake () {
12    spriteRenderer = GetComponent<SpriteRenderer> ();
13  }
14
15  public void Open () {
16    spriteRenderer.sprite = openSprite;
17
18 //    randomItem.RandomItemInit ();
19 //    GameObject toInstantiate = randomItem.gameObject;
20 //    GameObject instance = Instantiate (toInstantiate, new  
         Vector3 (transform.position.x, transform.position.y, 0f),  
         Quaternion.identity) as GameObject;
21 //    instance.transform.SetParent (transform.parent);
22
23    gameObject.layer = 10;
24    spriteRenderer.sortingLayerName = "Items";
25  }
26 }



Randomized Items

[ 104 ]

We are using a structure similar to the wall. We have already seen most of what is 
happening in the Chest class. Let's take a look at what we have done:

•	 Lines 4-26: This is the Chest class definition.
•	 Line 6: This is a reference to the sprite that will show that the chest has  

been opened.
•	 Line 7: This will be the randomized item that the chest spawns. It is 

commented out right now because we haven't made the Item class yet  
and this code will cause an error.

•	 Line 9: This is the reference to the Sprite Renderer component so that we 
can change the sprite when we need to.

•	 Lines 11-13: The Awake function will set the spriteRenderer variable to 
the chest's Sprite Renderer component.

•	 Lines 15-25: The Open function will switch the sprite and spawn the 
randomized item.

•	 Line 18: RandomItemInit will be the call we make to our Item class when 
we create it later in the chapter.

•	 Lines 18-21: These lines will be commented out till we make our Item class. 
If they are uncommented, they will cause an error.

•	 Line 23: Here, we set the layer to one farther down the list, so that we can 
walk over the opened chests.

•	 Line 24: Here, we set the sorting layer to a lower layer so that when we 
walk over the chest, it will appear under us.

Now, you can return to the Unity Editor and add the script to the Chest prefab.  
In the Open Sprite field, select Items_Sprite_Sheet_1. At this point, our Chest  
prefab is done except that there are no items for it to spawn. We also need to add  
the code that will spawn the chest.

Spawning the chest
We are going to utilize our public enum TileType for the chest spawning.  
The TileType enumeration is in the DungeonManager.cs file. We are going to add 
chest to the enumeration set. TileType will look like the following Code Snip 5.4:

1 public enum TileType {
2   essential, random, empty, chest
3 }
...
143 if (Random.Range (0, 70) == 1) {



Chapter 5

[ 105 ]

144   gridPositions.Add (chamberTilePos, TileType.chest);
145 } else {
146  gridPositions.Add (chamberTilePos, TileType.empty);
147 }

At the end of the DungeonManager.cs file, we also make an addition to the 
BuildRandomChamber function. We see that change at the end of Code Snip 5.4. Line 
143 creates a probability that a chest will spawn on any given tile within a chamber 
area of a dungeon. On Line 144, we then set TileType to TileType.chest for 
future reference. Now, we need to switch files to BoardManager.cs.

We need to add the reference to the Chest prefab. You can add the reference variable, 
public GameObject chestTile, near the other references to the different tiles. 
Then, the last adjustment that we need to make is in the SetDungeonBoard function. 
Code Snip 5.5 shows that change:

130 public void SetDungeonBoard (Dictionary<Vector2,TileType>  
    dungeonTiles, int bound, Vector2 endPos) {
131  boardHolder.gameObject.SetActive (false);
132  dungeonBoardHolder = new GameObject ("Dungeon").transform;
133  GameObject toInstantiate, instance;
134
135  foreach(KeyValuePair<Vector2,TileType> tile in dungeonTiles)  
     {
136    toInstantiate = floorTiles [Random.Range (0,  
       floorTiles.Length)];
137    instance = Instantiate (toInstantiate, new Vector3  
       (tile.Key.x, tile.Key.y, 0f), Quaternion.identity) as  
       GameObject;
138    instance.transform.SetParent (dungeonBoardHolder);
139
140    if (tile.Value == TileType.chest) {
141      toInstantiate = chestTile;
142      instance = Instantiate (toInstantiate, new Vector3  
         (tile.Key.x, tile.Key.y, 0f), Quaternion.identity) as  
         GameObject;
143      instance.transform.SetParent (dungeonBoardHolder);
144    }
145     } 
...

The SetDungeonBoard function was written in Chapter 4, Generating Random Dungeons. 
Now, we will add Lines 140-144. We use the tile value in our dictionary to check 
whether the tile has a chest on it. If it does, then we instantiate the chest tile the same 
way we have been instantiating everything.



Randomized Items

[ 106 ]

At this point, we can return to the Unity Editor. Drag and drop the Chest prefab into 
the Chest Tile field of the Board Manager script in the GameManager prefab. If you 
play the game and enter a dungeon, you should eventually find a chest. If you do not 
find any, you can go back to the DungeonManager.cs file and adjust the probability 
at which they spawn.

A randomly spawned chest

When you encounter a chest, nothing will happen. It will block you from moving  
but it won't open. We need to add the interaction functionality in the Player class, 
but it would be empty anyway.

We need some items for the chest to spawn. This is where our status modifying 
armor items come in. While we are in the Unity Editor, we can put together our  
Item prefab first.

The Item prefab
The Item prefab will be similar to the Food prefab. We want the item to trigger on 
collision so that we can pick up the item. You can create the Item prefab as follows:

1.	 From the top menu, navigate to GameObject | Create Empty.
2.	 Select the new empty object in the Hierarchy panel.
3.	 Name the object Item.
4.	 Set Tag to Item.



Chapter 5

[ 107 ]

5.	 Set Layer to Items.
6.	 Click on the Add Component button in the Inspector tab and add Sprite 

Renderer and Box Collider 2D components.
7.	 Leave the Sprite field of the Sprite Renderer component blank.
8.	 In the Sorting Layer field of the Sprite Renderer component, set the sorting 

layer to Items.
9.	 In the Box Collider 2D component, check the Is Trigger checkbox.
10.	 Drag and drop the new Item Prefab into the Prefabs folder and delete it from 

the Hierarchy panel.

Item code
After the prefab is made, create a new script in the Scripts folder. You can name the 
script Item.cs. This will be our Item class. We are going to use one prefab and one 
script to morph the item into several different types of items. So, open up Item.cs 
for editing. The following Code Snip 5.6 shows the full Item class:

1 using UnityEngine;
2 using System;
3 using Random = UnityEngine.Random;
4
5 public enum itemType {
6   glove, boot
7 }
8
9 public class Item : MonoBehaviour {
10 
11  public Sprite glove;
12  public Sprite boot;
13
14  public itemType type;
15  public Color level;
16  public int attackMod, defenseMod;
17
18  private SpriteRenderer spriteRenderer;
19
20  public void RandomItemInit () {
21    spriteRenderer = GetComponent<SpriteRenderer> ();
22    SelectItem ();
23  }
24



Randomized Items

[ 108 ]

25  private void SelectItem () {
26    var itemCount = Enum.GetValues(typeof(itemType)).Length;
27    type = (itemType)Random.Range(0,itemCount);
28    
29    switch (type) {
30      case itemType.glove:
31        attackMod = Random.Range(1,4);
32        defenseMod = 0;
33        spriteRenderer.sprite = glove;
34        break;
35      case itemType.boot:
36        attackMod = 0;
37        defenseMod = Random.Range(1,4);
38        spriteRenderer.sprite = boot;
39        break;
40    }
41    
42    int randomLevel = Random.Range(0, 100);
43    if (randomLevel >= 0 && randomLevel < 50) {
44      spriteRenderer.color = level = Color.blue;
45      attackMod += Random.Range(1,4);
46      defenseMod += Random.Range(1,4);
47    }
48    else if (randomLevel >= 50 && randomLevel < 75) {
49      spriteRenderer.color = level = Color.green;
50      attackMod += Random.Range(4,10);
51      defenseMod += Random.Range(4,10);
52    }
53    else if (randomLevel >= 75 && randomLevel < 90) {
54      spriteRenderer.color = level = Color.yellow;
55      attackMod += Random.Range(15,25);
56      defenseMod += Random.Range(15,25);
57    }
58    else {
59      spriteRenderer.color = level = Color.magenta;
60      attackMod += Random.Range(40,55);
61      defenseMod += Random.Range(40,55);
62    }
63  }
64 }



Chapter 5

[ 109 ]

Let's take a look at how the Item class works:

•	 Line 3: Set Random to use UnityEngine.Random.
•	 Lines 5-7: We are making another public enumeration that will tell us the 

current kind of Item type, which is either a glove or boot.
•	 Lines 11-12: We will need a reference to the glove and boot sprites.
•	 Line 14: We will keep a variable that holds the items type for reference.
•	 Line 15: The color of the item is going to represent how powerful the item 

is.
•	 Line 16: The attackMod and defenseMod variables will be the actual 

numeric value that gets added to the player's attack power of defense.
•	 Line 18: We will need a reference to Sprite Renderer to change the sprite.
•	 Lines 20-23: This will be the function that is called by the Chest class when 

a chest is opened.
•	 Lines 25-63: The SelectItem function will generate the randomized Item.
•	 Lines 26-27: Randomly choose an Item type.
•	 Lines 29-40: Based on the type we input, the item will have a 

corresponding base value. The item will have a higher attackMod value if it 
is a glove or a higher defenceMod value if it is a boot.

•	 Lines 42-62: This section will change the color and adjust the modifiers. 
Blue is most likely to spawn but is the weakest. Magenta is the least likely  
to spawn and is the most powerful. The values are all randomized within  
a range so each item is a little different.

Adding player to item interaction
Now, our randomized item class is ready to deploy. You can return to the Unity 
Editor and add the Item script to the Item prefab. There are some additional settings 
now that we will need to define:

•	 Set the sprite in the Glove field to Items_Sprite_sheet_2
•	 Set the sprite in the Boot field to Items_Sprite_sheet_3
•	 The other parameters are set at runtime by the script



Randomized Items

[ 110 ]

We still need to implement the Player class interaction with the Chest and Item 
classes. Open up the Player.cs script for editing. Code Snip 5.8 shows the changes 
needed for the item interaction:

16  public Image glove;
17  public Image boot;
18
19   public int attackMod = 0, defenseMod = 0;
20  private Dictionary<String, Item> inventory;
21  
22  protected override void Start () {
23    animator = GetComponent<Animator>();
24    health = GameManager.instance.healthPoints;
25    healthText.text = "Health: " + health;
26    position.x = position.y = 2;
27    onWorldBoard = true;
28    dungeonTransition = false;
29
30    inventory = new Dictionary<String, Item> ();
31
32    base.Start ();
33      }
…
61 if(horizontal != 0 || vertical != 0) {
62  if (!dungeonTransition) {
63    if (onWorldBoard)
64      canMove = AttemptMove<Wall> (horizontal, vertical);
65    else 
66      canMove = AttemptMove<Chest> (horizontal, vertical);
67
...
86  protected override void OnCantMove <T> (T component) {
87    if (typeof(T) == typeof(Wall)) {
88      Wall blockingObj = component as Wall;
89      blockingObj.DamageWall (wallDamage);
90    }
91    else if (typeof(T) == typeof(Chest)) {
92      Chest blockingObj = component as Chest;
93      blockingObj.Open ();
94    }
95
96    animator.SetTrigger ("playerChop");
97   }
...



Chapter 5

[ 111 ]

146 private void UpdateInventory (Collider2D item) {
147  Item itemData = item.GetComponent<Item> ();
148  switch(itemData.type) {
149    case itemType.glove:
150      if (!inventory.ContainsKey("glove"))
151        inventory.Add("glove", itemData);
152      else 
153        inventory["glove"] = itemData;
154
155      glove.color = itemData.level;
156    break;
157    case itemType.boot:
158      if (!inventory.ContainsKey("boot"))
159        inventory.Add("boot", itemData);
160      else 
161        inventory["boot"] = itemData;
162
163      boot.color = itemData.level;
164    break;
165  }
166
167  attackMod = 0;
168  defenseMod = 0;
169
170  foreach (KeyValuePair<String, Item> gear in inventory) {
171    attackMod += gear.Value.attackMod;
172    defenseMod += gear.Value.defenseMod;
173  }
174 }
175  
176 private void OnTriggerEnter2D (Collider2D other) {
177  if (other.tag == "Exit") {
178    dungeonTransition = true;
179    Invoke ("GoDungeonPortal", 0.5f);
180    Destroy (other.gameObject);
181  } else if (other.tag == "Food" || other.tag == "Soda") {
182    UpdateHealth(other);
183    Destroy (other.gameObject);
184  } else if (other.tag == "Item") {
185    UpdateInventory(other);
186    Destroy (other.gameObject);
187  }
188 }



Randomized Items

[ 112 ]

We need to make changes throughout the Player.cs file. Luckily, they aren't too 
complicated or lengthy. Let's take a look at what was done:

•	 Lines 16-17: We are going to need to represent what items we have in our 
inventory. These references will be images on screen that show us the type of 
armor Items we are carrying.

•	 Lines 19-20: We add the modifiers for later use in the Player class. Items 
will now directly affect these player modifiers. We also add a dictionary that 
will be our inventory.

•	 Line 30: Inside the Start function, we initialize our inventory.
•	 Lines 63-66: Inside the Update function, we need to a check to see what 

blocking object we are sending to the AttemptMove function. For now, we 
assume that the player will only be blocked by walls on the world board  
and chests on the Dungeon Board.

•	 Lines 86-97: We made our OnCantMove function accept a generic type T, 
which will either be a wall or chest at the moment. So, we need to check the 
type of incoming blocking object. We then call that blocking object's public 
interaction method.

•	 Lines 146-174: The UpdateInventory method will be called when the 
player picks up a new Item. We are only going to allow one item of each  
type in our inventory at the moment, so we first check the Item type against 
what we currently have in our inventory. If we already have one item of 
that type, say boots, we replace it with the new boots we just picked up. 
Otherwise, we just accept the newly picked item into the empty slot in our 
inventory. We also want to change the color of our on screen inventory to 
match the color of the Item we just picked up. After, we calculate the new 
status modifier values.

•	 Lines 176-188: At the end of the OnTriggerEnter2D function, we add  
a check for the Item tag. We will call the UpdateInventory method from 
here if we run into an Item.



Chapter 5

[ 113 ]

Before we return to the Unity Editor, we need to uncomment the commented code 
from our Chest.cs file. This will open up another field to edit in the Chest prefab. 
Once you uncomment the code, return to the Unity Editor and add the Item prefab 
to the Random Item field of the Chest prefab.

chest and item but no visible inventory

Now, we can play the game and see our item system in action. You can find a chest 
and open it to reveal a random item. However, you still can't pick it up. Even if you 
could pick up the item, you would really have no way of knowing what is in your 
inventory. We did write the code that would handle this though. We only need to 
add the UI elements that will display our inventory. Here is what we need to add:

1.	 In Hierarchy, right-click on the Canvas object.
2.	 Navigate to UI | Image.
3.	 Name image GloveImage.
4.	 Set both Width and Height to 50.
5.	 Set Pos X to -430 and Pos Y to -180.
6.	 Set Source Image to Items_Sprite_Sheet_2.
7.	 Create another image.
8.	 Name the image BootImage.
9.	 Set Pos X to -365 and Pos Y to -180.
10.	 Set Source Image to Items_Sprite_Sheet_3.



Randomized Items

[ 114 ]

In order to activate the inventory images, we need to set the references in the Player 
prefab. Select the Player object in the Hierarchy panel and find the Glove and 
Boot fields in the Inspector tab. Drag and drop the GloveImage and BootImage 
respectively. Click on the Apply button at the top.

Picked up items show in inventory

Now, we have all we need to pick up items and actually see what we have in our 
inventory. Try this functionality out. While playing, view the player in the Inspector 
tab and look at the Attack Mod and Defense Mod fields. They will change with 
every item you pick up.

Summary
For this chapter, we couldn't avoid adding in some art assets, but we were able to 
take those assets and multiply them. We figured out a good way to randomly place 
Items by implementing some health Items. Then, we expanded on that by spawning 
Chests that contain random armor Items. We only used two sprites for our armor 
Items but turned them into essentially eight different items.

You learned how to take some elements in our game environment and use them to 
our advantage, such as the wall tile yielding food items. You learned how to take a 
more subtle approach to randomly spawning assets into the game. We used highly 
guided PRNs to determine types of Items. You learned how to use something such  
as color to change the look of an item enough to make it a new item. And finally,  
we created a simple inventory base that can be expanded upon.

We are going to continue with the item theme in the next chapter. We have health 
items to heal us from enemy attacks and we have armor items to protect us from 
bad guys. All we need now is weapons to do some damage. The next chapter will 
introduce random modular weapons.



[ 115 ]

Generating Modular 
Weapons

PCG is a great way to minimize the number of handcrafted art assets that we need 
to create for our game. However, it is unrealistic to think that we won't need any art 
assets at all. We can still use our art intelligently, and with the aid of PCG, a little art 
can go a long way.

In this chapter, we see how we can create small pieces of art that are combined in 
different ways to generate bigger and randomly unique assets. We will be creating 
a modular weapon system. Each piece of art is a module that will attach to another 
module to create a whole weapon. We can then let the pieces combine randomly to 
give us surprisingly unique assets.

Here is what you will learn in this chapter:

•	 Understanding modular art assets
•	 Learning about the statistics behind modular generation
•	 Procedurally generating game objects that are composed from smaller pieces
•	 Animating via a script



Generating Modular Weapons

[ 116 ]

The weapons that will be generated from this modular weapon system will be used 
by our player character. Since we are generating an entirely unique asset from some 
existing assets, we will forfeit our use of sprite animation, which is derived from  
a sprite sheet. It isn't very interesting to just see the image of the weapon, though.  
We will also have to script some animation for the character in order for it to swing 
the weapon.

The final result of the modular weapon implementation

Once our weapon generation system is implemented, we will be able to easily add 
to it. The weapons will allow our player to attack and defend themselves. We are 
approaching the end of the development of our game, so let's jump in and keep the 
momentum going.

PCG with modules
In software development, we strive to make our code modular. This means that 
we break our code down into smaller, simpler pieces, which are sometimes called 
modules. The point is to create larger systems out of pieces that can be reused in  
as many ways as possible. If we write code in this way, we can efficiently create 
similar systems and also increase our flexibility.

We could apply this concept to art, as well. If we separate a piece of art into its 
components, we can redraw each component in many different ways. Each component 
is a module, and we can swap modules to make a whole new piece of art.

An example of this would be a sword. A sword is made up of three basic 
components of modules, such as a blade, a hilt, and a handle. We can combine  
any blade with any hilt and handle, if we choose to. We will put this example into 
practice, as this will show exactly how we implement our modular weapons.



Chapter 6

[ 117 ]

Weapon module sprites

Statistics of modular PCG
Besides the fact that this system gives us randomly unique items in our game, there 
is another reason that this system is desirable. We can produce a small number  
of modular art assets and, in return, generate a large number of whole art assets. 
This, in turn, can save a lot of time and resources in our asset creation process.

We can give ourselves an idea of just how many items we can generate with a  
few modular pieces by doing a little math. Say, for example, we have four possible 
modules per component of the sword. This means that there are four blades, four 
hilts, and four handles, which comes up to 12 modules in total. The possible number 
of combinations of all these modules is as follows:

34 4 4 4 64∗ ∗ = =

Comparing 12 modules to 64 whole art assets, we can see that we have just over five 
times the generated art assets than we do the modules. This is a pretty good return, 
but it doesn't end there. If we add just one more module to each type of component, 
with five blades, five hilts, and five handles, we now have this combination:

35 5 5 5 125∗ ∗ = =

By adding only three more modules, we get over eight times the return in generated 
art assets. This is because we have created an exponential relation. Adding more 
modules will exponentially increase the number of ways in which they can be 
combined to generate whole art assets. This is extremely powerful as we can deliver 
our game with less baked-in information, making it smaller in size. Instead of creating 
125 distinct art assets, we will have to only create 15 art assets. The variety that is a 
result of this method will keep our player interested for a longer period of time.



Generating Modular Weapons

[ 118 ]

Creating and configuring new sprites
It is beneficial to know exactly how the module sprite alignment works so that we can 
go a little more in-depth into the subject of sprite creation than in previous chapters. 
As stated in the preceding examples, we are going to create a sword as our modular 
weapon model. We will first need to add a new sprite sheet with our weapon modules. 
This particular sprite sheet will need some special considerations, though.

We will be overlaying the 2D sprites on top of one another. Each module will align in 
such a way that does not obstruct the view of the other modules. In order to do this 
with no mathematical calculation, we will create each module with a bounding box 
of the same size. This way, each sprite will occupy the same bounding space, but we 
will move the actual image to align with the other modules.

Note that this method of using identical bounding boxes is a 
simplification due to the animation that we will be adding. In 
a production grade video game, you would want to make the 
bounding boxes as small as possible, and use a mathematical 
calculation to offset the images from one another.

Weapon modules in their respective bounding boxes

Setting the bounding box to an appropriate size will be done in Unity, but we need 
to make sure that there is adequate room in the sprite sheet to do this. We have been 
using the metric to indicate that each of our tiles is 32 x 32 pixels. We will want to 
place our modules within a tile of this size so that each module occupies the same 
amount of space.

We will be making four modules for each sword component, which means four 
blades, four hilts, and four handles. This is a total of 12 modules. We can space  
them out to make four 32 pixel columns by three 32 pixel rows. The exact size of  
this sprite sheet is 128 pixels (width) by 96 pixels (height). Even though we are  
using a low-resolution art form, we can still match pixels in this same way for  
any 2D resolution art modulation.



Chapter 6

[ 119 ]

The sprite sheet, which is provided to you in the accompanying files of Chapter 6, 
uses a blade height of 21 pixels. In each 32 pixel block, you can align the top of the 
blade with the top of the canvas. Then, you will align the top of the hilt to be just 
under 22 pixels from the top of a different block.

Measurements of a module

Once our sprite sheet is prepared and ready for use, we will import it into our Unity 
project under the Sprites folder, as we did earlier. Here are the steps as a reminder:

1.	 Inside the Unity Editor, navigate to the Project tab.
2.	 Open the Sprites folder, right-click and select Import New Asset….
3.	 Navigate to your modular weapon sprite sheet; the one provided is named 

WeaponSpriteSheet.png.



Generating Modular Weapons

[ 120 ]

We will now have to do some Unity-specific editing. We will be setting the sprite 
settings to what we were using in the previous chapters. The sprite import settings 
are as follows:

1.	 Set Sprite Mode to Multiple.
2.	 Set Pixels Per Unit to 32.
3.	 Set Filter Mode to Point.
4.	 Set Max Size to 1024.
5.	 Set Format to Truecolor.
6.	 Click on the Apply button.

After you are done with the settings, we are going to slice the sprites so that they  
will overlap correctly. Each sprite will contain the image of its respective module  
and some transparent space for the other component to show through. Also, we  
have to consider an animation to swing the weapon. It will be beneficial to set a 
common pivot point for each module.

With WeaponSpriteSheet.png selected, click on the Sprite Editor button in the 
Inspector tab. You can try the Slice button in the upper-left corner of the Sprite 
Editor window, but some of these modules are too small for it to easily detect.  
Either way, you will have to make some adjustments to the bounding box.

You can click and drag a bounding box anywhere in the Sprite Editor window. Once 
a bounding box is made, you can click and drag one of its corners to change its size. 
You will see the size of the currently selected bounding box in the lower-right corner.

You can make each bounding box only the width of the module, but the height must 
be 32 pixels. If you start with the top row, you can drag the boxes that are 32 pixels 
in height and are aligned with the top of the Sprite Editor window. Then, you can 
move on to the second row and draw similar boxes that align with the bottom of the 
top row. You can do the same for the third row.

We will also set the pivot point to be the same for each module so that it can rotate 
for our animation at the same point. The pivot point is the center circle of each box 
and can be dragged and dropped anywhere. We want it at the very bottom of every 
bounding box.



Chapter 6

[ 121 ]

Pivot points for each type of module

When you are done, you can click on Accept in the upper-right corner of the Sprite 
Editor. The WeaponSpriteSheet.png file should now have an arrow on it, showing 
that you can expand it to see the separated modules. We are now ready to make our 
Weapon prefab.

Creating a multiple image prefab
Unity GameObjects can only hold one Sprite Renderer component at a time. This 
Sprite Renderer can only render one sprite at a time. So, the easiest way to achieve 
our goal is to make multiple GameObjects, each with their own Sprite Renderer.  
We can then place all the module GameObjects under a parent GameObject for  
easy reference.

A more optimal solution would be to have the module sprites redrawn as a 
single sprite and then passed to a single Sprite Renderer in a single GameObject. 
GameObjects are rather large structures, and too many of them can impact 
performance. For now, our solution will work fine, but perhaps, you can return to 
this issue later and find a way to compress everything into a single GameObject.



Generating Modular Weapons

[ 122 ]

We will start making our Weapon prefab with an empty GameObject with the 
following steps:

1.	 Create a new empty GameObject.
2.	 Name the GameObject Weapon.
3.	 Add a tag to the GameObject called Weapon as well.
4.	 Put the Weapon object in the Units layer.
5.	 Add a Box Collider 2D component.
6.	 In Box Collider 2D, check Is Trigger.
7.	 Create another empty GameObject.
8.	 Name the new empty GameObject WeaponComponents1.
9.	 Put the WeaponComponents1 object in the Units layer.
10.	 Add a Sprite Renderer component.
11.	 Put Sorting Layer of the Sprite Renderer component to the Units layer.
12.	 Drag and drop the WeaponComponents1 object into the Weapon object to 

make it a child of the Weapon object.
13.	 You can then duplicate the WeaponComponents1 object twice, and name 

them WeaponComponents2 and WeaponComponents3.

At this point, we have done all that we can for the creation of the prefab. We need 
to add some scripts now that will configure the modular weapon behind the scenes, 
much like we did with the random items in Chapter 5, Randomized Items. So, let's take 
a look at the weapon and weapon component scripts.

Modular weapon scripts
Our modular weapon script will do the following three main actions:

•	 The Weapon script will create the connection to the player and the weapon
•	 The player will need to carry and use the weapon
•	 The script will drive the scripted animation, and it will also drive the the 

random construction of the weapon from the weapon component

We are going to place some hooks in the class definition as empty functions that we 
will fill in when we have some more information. Let's take a look at the full Weapon 
class script that's shown in Code Snip 6.1:

1 using UnityEngine;
2 using System.Collections;
3



Chapter 6

[ 123 ]

4 public class Weapon : MonoBehaviour {
5 
6  public bool inPlayerInventory = false;
7
8  private Player player;
9  private WeaponComponents[] weaponsComps;
10 private bool weaponUsed = false;
11  
12  public void AcquireWeapon () {}
13
14  void Update () {}
15  
16  public void useWeapon () {}
17
18  public void enableSpriteRender (bool isEnabled) {}
19
20  public Sprite getComponentImage (int index) {
21    return null;
22  }
23 }

Let's go through and explain what's happening in the Weapon class script:

•	 Line 6: inPlayerInventory is a Boolean flag to identify whether or not the 
weapon was picked up by the player.

•	 Line 8: We want to keep a reference to the player character so that we can 
provide a reference to its absolute position at all times.

•	 Line 9: We will have an array of references to the weapon components child.
•	 Line 10: weaponUsed is another flag that we will use to trigger the  

swing animation.
•	 Line 12: This is our first hook. AcquireWeapon will be the function that the 

Player class calls in order to add a weapon to the inventory. We will need to 
make the Weapon class a child of the Player class as well.

•	 Line 14: We are keeping the Update() function because we will be running 
an animation that's controlled in this script. The animation will have to 
update frames along with the timing of the game.

•	 Line 16: useWeapon() will be the function that is called by the player to 
start the weapon swing animation.



Generating Modular Weapons

[ 124 ]

•	 Line 18: Because the Weapon class is a child of the Player class and is 
always in the same location as the Player class, we will need a way to  
make it invisible. enableSpriteRender (bool isEnabled) will disable  
the Sprite Renderers of the weapon components to keep them invisible till 
they are used.

•	 Line 20: We want to inform the player about the weapon that they 
are carrying. Like the glove and boot items, we will add on a screen 
image of the sword that the player currently has in his or her inventory. 
getComponentImage (int index) will get the image that's to be displayed 
on the screen.

We will return to the Weapon class definition throughout the rest of this chapter as 
we discover what is required to make our Weapon class work. We will follow the 
Weapon class definition with the WeaponComponents class definition. We will then 
be able to fill in some of the blanks from the Weapon class definition. After all this, 
we can finish constructing the Weapon prefab. For now, let's take a look at the 
WeaponComponents class in Code Snip 6.2:

1 using UnityEngine;
2 using System.Collections;
3 using Random = UnityEngine.Random;
4
5 public class WeaponComponents : MonoBehaviour {
6
7  public Sprite[] modules;
8  
9  private Weapon parent;
10 private SpriteRenderer spriteRenderer;
11  
12  void Start () {
13    parent = GetComponentInParent<Weapon> ();
14    spriteRenderer = GetComponent<SpriteRenderer> ();
15    spriteRenderer.sprite = modules [Random.Range(0,  
      modules.Length)];
16  }
17
18  void Update () {
19    transform.eulerAngles = parent.transform.eulerAngles;
20  }



Chapter 6

[ 125 ]

21  
22  public SpriteRenderer getSpriteRenderer () {
23    return spriteRenderer;
24  }
25 }

We will be able to choose which modules we want this component to render in the 
Unity Editor. The array of modules that we give the WeaponComponent class will 
have a single module that's chosen from it to be rendered. Let's take a look at what 
we have developed in Code Snip 6.2:

•	 Line 3: Set Random to use the Unity built-in Random library.
•	 Line 7: This array will hold the different modules that make up a weapon.
•	 Line 9: We will need to store a reference to the parent object, which is the 

Weapon object. The Weapon script will direct our weapon components to turn 
off and on.

•	 Line 10: We will also need to store a reference to the Sprite Renderer 
component to turn it off and on.

•	 Lines 12-16: The Start() function will be where we set up our parent 
and Sprite Renderer references. The function will then randomly select the 
module from the array of modules to render.

•	 Lines 18-20: We will use the Update() function to continuously poll the 
parent weapon object for it's angle. We want all of the weapon components 
to match the angle of the parent weapon object and, in turn, the player 
character. The plan is to turn the weapon as the player character turns.

•	 Lines 22-24: We want to pass a reference to the component's Sprite 
Renderer. This way, we can manipulate when the Sprite Renderer is  
enabled or disabled in the Weapon class.

Now that we have the WeaponComponent class written, we can finish building our 
Weapon prefab. Return to the Unity Editor, and select the Weapon GameObject in 
the Hierarchy panel. Add the Weapon.cs script.



Generating Modular Weapons

[ 126 ]

Next, select each weapon component GameObject that is a child of the Weapon 
GameObject. Add the WeaponComponents.cs script. Then, for WeaponComponents1, 
select the Modules array and set the size to 4. Add the corresponding blade module 
sprites. Do the same for the other weapon components.

Weapon Component's settings

You can now drag and drop the whole Weapon prefab into the Prefabs folder, and 
delete the Weapon object from the Hierarchy panel. You'll see that the Weapon 
prefab can be expanded. If you expand it, you'll see the child prefabs that are the 
weapon components. You can edit the individual components here:

The expanded Weapon prefab



Chapter 6

[ 127 ]

Adding a spawn point
Now that we have our Weapon prefab put together, we are going to need a way 
to get it to the player. We've already answered this problem, with the chest, in the 
previous chapter. We will just reuse the Chest object to also spawn weapons as well.

Open the Chest.cs script that's to be edited. We will want to add a variable to store 
a reference to our generated weapon. Add the public Weapon weapon; variable 
right under our randomItem variable. Then, we need to make some adjustments to 
our Open() function, which can be seen in Code Snip 6.3:

1 public void Open () {
2  spriteRenderer.sprite = openSprite;
3
4  GameObject toInstantiate;
5
6  if (Random.Range (0, 2) == 1) {
7    randomItem.RandomItemInit ();
8    toInstantiate = randomItem.gameObject;
9  } else {
10    toInstantiate = weapon.gameObject;
11  }
12  GameObject instance = Instantiate (toInstantiate, new Vector3  
    (transform.position.x, transform.position.y, 0f),  
    Quaternion.identity) as GameObject;
13  instance.transform.SetParent (transform.parent);
14  gameObject.layer = 10;
15  spriteRenderer.sortingLayerName = "Items";
16 }

This will be a pretty simple update. We just need to add the condition that weapons 
can spawn as well. Let's take a look at how this can be done:

•	 Lines 6-11: We add the new random conditional here. Right now, items and 
weapons have a 50/50 chance that either will spawn, but you can experiment 
with this value as you see fit.

•	 Lines 12-15: We pushed the actual instantiation call to the bottom of the 
function so that we could either instantiate an item or weapon, but we don't 
really need to explicitly know which is which.



Generating Modular Weapons

[ 128 ]

Returning to the Unity Editor, go to the Chest prefab, and in the Chest Script 
component, assign the Weapon prefab to the Weapon field. Now you can play the 
game and check that the chest spawns a randomized modular weapon. By interacting 
with some chests, you should eventually find a sword. You won't be able to pick the 
weapon up like you did with items, but this completes the first step.

Chest spawning a weapon

Adding a weapon pick up
Now, we can move on to adding the logic that will run the player pickup of the 
weapon object. This will be very similar to the other player pickups except that the 
weapon will need a few special considerations. For one, the weapon will need to be in 
the same screen location as the player at all times so that it can animate appropriately.

Let's begin by opening up the Player.cs script where the current player pickup 
logic exists. We are going to add a few new variables that will hold references to our 
weapon and some of the images that we will use to make the display icon. As stated 
earlier, we will create a display icon on the screen that will show the weapon that the 
player has in their inventory. Add the following lines to the beginning of the Player 
class definition:

1 private Weapon weapon;
2 public Image weaponComp1, weaponComp2, weaponComp3;



Chapter 6

[ 129 ]

We will then edit the OnTriggerEnter2D function. We need to add a condition that 
will allow us to handle against colliding with a weapon object. The updated function 
can be seen in Code Snip 6.5:

1 private void OnTriggerEnter2D (Collider2D other) {
2  if (other.tag == "Exit") {
3    dungeonTransition = true;
4    Invoke ("GoDungeonPortal", 0.5f);
5    Destroy (other.gameObject);
6  } else if (other.tag == "Food" || other.tag == "Soda") {
7    UpdateHealth(other);
8    Destroy (other.gameObject);
9  } else if (other.tag == "Item") {
10   UpdateInventory(other);
11    Destroy (other.gameObject);
12  } else if (other.tag == "Weapon") {
13    if (weapon) {
14      Destroy(transform.GetChild(0).gameObject);
15    }
16    other.enabled = false;
17    other.transform.parent = transform;
18    weapon = other.GetComponent<Weapon>();
19    weapon.AcquireWeapon();
20    weapon.inPlayerInventory = true;
21    weapon.enableSpriteRender(false);
22    wallDamage = attackMod + 3;
23    weaponComp1.sprite = weapon.getComponentImage(0);
24    weaponComp2.sprite = weapon.getComponentImage(1);
25    weaponComp3.sprite = weapon.getComponentImage(2);
26      
27  }
28 }

We aren't adding the weapon object to our inventory map so that we can manipulate 
it more easily. We can simply change the colors of an existing object, like we did with 
the items of the previous chapter. Instead, we need to keep track of whether we have 
a weapon or not before we add another to our player. Let's take a look at what we 
have developed in Code Snip 6.5:

•	 Line 12: This line starts the conditional statement that checks whether we 
have collided with a weapon.

•	 Lines 13-15: We need to check whether we already have a weapon and 
destroy it if we do. The weapon will get added to the player as a child. 
The new weapon only overwrites the weapon reference, not the entire 
GameObject. If we don't remove it, we will end up adding a bunch of  
objects to the scene that are not used and will potentially slow our game.



Generating Modular Weapons

[ 130 ]

•	 Line 16: We want to disable BoxCollider2D of the spawned weapon so  
that we don't trigger it again. Remember that the weapon will share the  
same coordinates as the player.

•	 Line 17: Here, we make the player the parent of the weapon that we  
just collided with.

•	 Line 18: We need to store a reference to the Weapon script.
•	 Lines 19-21: We will also call all of the functions that initialize  

the weapon as part of the player inventory. The AcquireWeapon and 
enableSpriteRender functions haven't been implemented yet, but we  
will be getting to them shortly.

•	 Line 22: Adding in attackMod that's brought in by items, we finally get to 
update the damage done by the player.

•	 Lines 23-25: Lastly, we are going to update the Image variables so that we 
can use them for the display icon.

Before we leave the Player class, we should also update the UpdateInventory 
function. Add the following conditional statement at the end of the function definition:

1 if (weapon)
2   wallDamage = attackMod + 3;

This additional code will make it so the damage done by the player is recalculated to 
reflect the newly acquired items and/or weapon.

We can return to the Unity Editor now and check that things are working as we 
expect them to. Play the game and find a sword spawned from a chest. We couldn't 
interact with the weapon before, but now we can. Unfortunately, the weapon never 
hides from view and the display icon is a blank white.

The weapon is unhidden and follows the player, while there is a blank image to the right



Chapter 6

[ 131 ]

We will have to head back to our Weapon class definition and start filling out 
the hook functions that we created. The first of these will be the AcquireWeapon 
function, which is used to initialize the connection between the Player, Weapon, and 
WeaponComponents classes. We can see the function implementation in Code Snip 6.6:

1 public void AquireWeapon () {
2   player = GetComponentInParent<Player> ();
3   weaponsComps = GetComponentsInChildren<WeaponComponents> ();
4 }

Line 2 grabs a reference to the Player script that the Weapon class is attached to. 
Line 3 grabs an array of the WeaponComponents scripts that are attached to the 
Weapon class. And now the three classes can communicate with each other.

Next is the enableSpriteRender function. This function will enable or disable 
the Sprite Renderers of the WeaponComponents class. We can see the function 
implementation in Code Snip 6.7:

1 public void enableSpriteRender (bool isEnabled) {
2   foreach (WeaponComponents comp in weaponsComps) {
3     comp.getSpriteRenderer ().enabled = isEnabled;
4   }
5 }

We pass a bool argument that will represent whether we want to enable or disable 
the Sprite Renderer. isEnabled should be true to enable the Sprite Renderer and 
false otherwise. The function uses a loop to call the getSpriteRenderer function 
from each weapon component and sets the returned Sprite Renderer to the value  
of isEnabled.

Lastly, we will use the getComponentImage function to return a reference to the 
weapon component's module sprite. This sprite will then be used by the Player  
class to construct the display icon that will tell us which weapon we are using.  
The function just needs the return null; line to be replaced with the following:

return weaponsComps[index].getSpriteRenderer().sprite;



Generating Modular Weapons

[ 132 ]

With this piece of code, you can save your changes and head back to the Unity Editor. 
We have completed the spawn and pick up phase of the weapon implementation. 
You can test it by finding a sword in a chest and walking over it. The sword should 
disappear from the chest and reappear in the lower-right corner of the screen as part  
of the UI:

The sword is hidden and the icon to the right appears

After you've checked to see that the weapon pick up is successful, you can find a 
wall to hit. The wall will sustain more damage and be destroyed quicker, but it is 
only implied that the sword is causing this effect. It would be more immersive if  
we could see the sword swing as the player character swipes at the wall.

Adding scripted weapon animation
The art we imported for our weapon modules is static, which means that we 
didn't add in any supplemental art to create animations. If we had added in these 
animations, our art assets would have increased dramatically, and we are trying  
to avoid this. So, instead, we are going to do what we have been doing and rely  
on programming.

We want the randomly constructed weapon to animate a swing when the player 
attacks. So, we are going to program the animation in such a way that it is the same 
for all the Weapons. This process is very much based on experimentation to get 
the right look and feel. One solution can be seen in Code Snip 6.8. The code is in the 
Weapon class definition as the Update function definition:

1 void Update () {
2   if (inPlayerInventory) {
3     transform.position = player.transform.position;



Chapter 6

[ 133 ]

4     if (weaponUsed == true) {
5       float degreeY = 0, degreeZ = -90f, degreeZMax = 275f;
6       Vector3 returnVecter = Vector3.zero;
7
8       transform.rotation = Quaternion.Slerp  
        (transform.rotation, Quaternion.Euler (0, degreeY,  
        degreeZ), Time.deltaTime * 20f);
9       if (transform.eulerAngles.z <= degreeZMax) {
10        transform.eulerAngles = returnVecter;
11        weaponUsed = false;
12        enableSpriteRender (false);
13      }
14    }
15  }
16 }

The weapon is initially in an upright state. So, the basics of the animation include 
making the weapon appear and swing downward from its pivot point. This is the 
reason we took time to adjust the pivot point of each sprite in the first place. Let's 
take a look at the scripted animation in Code Snip 6.8:

•	 Line 2: In order for the animation cycle to begin, the player must first have 
a weapon in his or her inventory. The Player class will directly change the 
inPlayerInventory variable.

•	 Line 3: We ensure the weapon shared the same coordinates as the player.
•	 Line 4: Only when the weaponUsed flag is set, we run the animation cycle. 

The useWeapon function will be called by the Player class who will set  
this flag.

•	 Lines 5-6: These are the various rotation values that need to take place. 
These values can be adjusted for different arc animations.

•	 Line 8: This is the actual animation. We use a Slerp function to rotate  
the sword that originates from the Player class. Slerp stands for spherical 
linear interpolation, which is built into Unity.

•	 Lines 9-13: We only want the sword to swing to a certain angle and then 
disappear again. Here, we check whether it has exceeded this angle and then, 
if so, we reset the angle of the weapon.

For more information on Slerp (Spherical Linear Interpolation) 
in Unity3D, refer to http://docs.unity3d.com/
ScriptReference/Quaternion.Slerp.html.

http://docs.unity3d.com/ScriptReference/Quaternion.Slerp.html
http://docs.unity3d.com/ScriptReference/Quaternion.Slerp.html


Generating Modular Weapons

[ 134 ]

The animation is fairly simple, but most of the angles were acquired via experimenting 
and seeing what looked good. Animation usually involves some experimentation with 
what looks correct to the eye, regardless of your medium. You should play with the 
values and see what kind of animations you can make as well.

We aren't done with the animation implementation quite yet though. We need a  
way to drive the animation. The useWeapon function needs its definition filled so  
that the player can call the weapon animation. The useWeapon function only needs 
the following two lines:

1 enableSpriteRender(true);
2 weaponUsed = true;

Now, we need to jump over to the Player class to write in where and when the 
weapon animation is called. Luckily, this is a very small change as well. In the 
Player class's OnCantMove function, we will add the following two lines at the  
end of the function definition:

1 if (weapon) {
2   weapon.useWeapon ();
3 }

This conditional statement checks whether there is a weapon in the player's inventory 
and if there is, then the Player class will call the animation. Note that the OnCantMove 
function is called when there is something obstructing the player's path. Therefore, the 
weapon animation will only be called when an object is obstructing the player's path, 
such as a wall or an enemy.

Go back to the Unity Editor to try out the newly implemented weapon animation. 
You'll need to go find a sword, exit the dungeon, and then attack a wall tile. If you 
attack a wall that is to the right of the player, you'll see the animation as if the player 
swings the sword at and through the wall.

Weapon animation



Chapter 6

[ 135 ]

If you attack a wall that is to the left of the player, the player still swings to  
the right. In addition to this, the player is permanently facing toward the right.  
This just doesn't look right and pulls the player out of the immersion, as follows:

The player faces to the right and the sword swings to the right as well, while the wall on the left is damaged

Adding character facing directions
The last task we have is to add a functionality that will allow the player to change  
the direction he or she faces. Then, we can add some functionality that will allow  
the sword to swing in the same direction that the player is facing. To achieve this,  
we will have to start in the MovingObject class.

The AttempMove function is where the direction of the player is managed. This is 
where we can poll what direction the player is moving in, and change the sprite 
direction accordingly. Code snip 6.9 shows the update that should be added to the  
top of the AttemptMove function definition:

1 protected virtual bool AttemptMove <T> (int xDir, int yDir)
2   where T : Component
3 {
4   if (xDir == 1) {
5     transform.eulerAngles = Vector3.zero;
6   } else if (xDir == -1) {
7     transform.eulerAngles = new Vector3(0,180,0);
8     }
...

The AttemptMove function was initially written with the integers representing the 
direction that the player is moving in. If xDir is 1, then the player moves to the right 
of the screen, and if xDir is -1, the player moves to the left. This is reminiscent of a 
coordinate plane.



Generating Modular Weapons

[ 136 ]

So, in lines 4-8, we write a conditional statement that states when the player is 
headed to the right, we set the transform rotation to 0. If the player is headed to the 
left, then we rotate the player sprite 180 degrees on the y axis. This will flip the sprite 
so that it faces the left of the screen. When the player is headed to the right, it will flip 
back to the origin. The following screenshot shows our player character, who at first, 
only faced right and now faces left:

The player can now face left

You can head back to the Unity Editor and check this work correctly. But if you 
obtain a weapon and try to use it while facing left, it will still swing to the right.  
So, we need to do a little more work to correct the swing of the weapon.

First, we need to add some functionality to the Weapon class. In the Update function 
where the animation takes place, we will need to add a condition in which the weapon 
can swing to the left. Code snip 6.10 shows the necessary changes that need to be made 
to the Weapon class's Update function:

1 void Update () {
2   if (inPlayerInventory) {
3     transform.position = player.transform.position;
4     if (weaponUsed == true) {
5       float degreeY = 0, degreeZ = -90f, degreeZMax = 275f;
6       Vector3 returnVecter = Vector3.zero;
7       if (Player.isFacingRight) {
8         degreeY = 0;
9         returnVecter = Vector3.zero;



Chapter 6

[ 137 ]

10      } else if (!Player.isFacingRight) {
11        degreeY = 180;
12        returnVecter = new Vector3(0,180,0);
13      }
14      transform.rotation = Quaternion.Slerp  
        (transform.rotation, Quaternion.Euler (0, degreeY,  
        degreeZ), Time.deltaTime * 20f);
15      if (transform.eulerAngles.z <= degreeZMax) {
16        transform.eulerAngles = returnVecter;
17        weaponUsed = false;
18        enableSpriteRender (false);
19      }
20    }
21  }
22 }

Lines 7-14 are the new additions. We add a conditional statement that checks whether 
the player is facing to the right or not. We use a bool variable that doesn't exist yet, 
but we will add this to the Player class definition shortly. The conditional statement 
changes the rotation of the y axis via degreeY, which will make the weapon face 
toward the right or left, like the player does. Then, it sets the value that will return  
the weapon to it's upright starting position relative to the direction that it faces.

Once this is complete, we can move on to the Player class definition and make some 
final changes there. At the top of the Player class definition, add the public static 
bool isFacingRight; line. This variable is the one we refer to in the Weapon class 
to determine the direction that the player faces.

Next, we need to actually set the value for the isFacingRight variable. This will 
take place in the Player class override of the AttemptMove function. At the top of  
the function definition, add this conditional statement:

1 if (xDir == 1 && !isFacingRight) {
2   isFacingRight = true;
3 } else if (xDir == -1 && isFacingRight) {
4   isFacingRight = false;
5 }



Generating Modular Weapons

[ 138 ]

Save your changes and head back to the Unity Editor. You can test the newly 
completed weapon system. Your character now turns to the left and right as well  
and swings his or her weapon in the correct direction. You can see this best if you 
find and use the asymmetrical curved sword.

The player can swing the sword toward the left

The sword now swings to the left and right, but what about upward and downward? 
Our character can attack in four directions and we have only handled two of them. 
This is a good exercise for you to tackle on your own. Try adding a sword animation 
that arcs the sword above the player's head and below his or her feet.

Summary
This completes the implementation of modular weapons. Remember that for our 
weapon prefab, all you need to do is add another set of three modules (blade, hilt, 
and handle) to drastically increase the number of combinations that the Weapon 
prefab can take. We did more than just create a useless modular weapon, though; 
we actually implemented its full functionality. This gave us some insight on a few 
different development techniques, such as scripted animation.

In this chapter, you learned about what a modular weapon is and the concept of 
breaking a structure down to small reusable parts. You learned that a few additional 
modules can create exponentially more combinations. We also developed one 
technique in procedurally generating and combining sprites to make a whole 
GameObject. Lastly, you developed a system to animate the weapon action via  
a script alone.



Chapter 6

[ 139 ]

There are some optimizations that can be made with this system that I will leave 
up to you. Remember, every GameObject we add to the screen will slow down the 
entire game and is very hard to enable on mobile platforms. I recommend that you 
look into how you might combine modules into one sprite, and then add a single 
GameObject instead of four per weapon.

Next, we are going to put those weapons and items to use as we introduce enemies 
with adaptive difficulty. We can procedurally change and adapt our AI and enemy 
strength to the player as they get stronger in the game.





[ 141 ]

Adaptive Difficulty
In Chapter 2, Roguelike Games, we imported an Enemy prefab and an Enemy script but 
we haven't used either of them yet. So far, our character has been wandering around 
an empty world collecting food and items. But that is all about to change because in 
this chapter, we are going to add brain hungry zombies that scale in difficulty and 
test the player's strength.

Player among enemies!

Adaptive difficulty can be solely a PCG solution or it can, in part, rely on an artificial 
intelligence (AI) solution. Our main goal with PCG is to expand the playtime and 
game content. Normally, when we think of PCG, we think of content such as art 
assets being programmatically created or new game objects being added to the game 
at runtime. We can also think of PCG as a means to expand the game's complexity 
internally as well.



Adaptive Difficulty

[ 142 ]

We will be adding enemies to both the world board and Dungeon Board. At first, 
the enemies won't be very dangerous as they are slow and not good at navigating 
obstacles. However, as the player gains weapons and items and becomes more 
dangerous, the enemies will get smarter, faster, and more numerous.

In this chapter, you will be learning how to use the idea of PCG to change the 
gameplay and make it more challenging. You will develop some simple AI and  
path-finding routines. Then, lastly, you will adjust the AI during gameplay to  
keep the player challenged. We will cover the following topics:

•	 Adding enemies to the world board
•	 Adding enemies to the Dungeon Board
•	 Fighting the enemy
•	 Adaptive difficulty

So, we will be generating enemies for the player to battle against, but we will also 
be generating the enemy's behavior. The goal is to increase the challenge the player 
faces as the player gets stronger. Making the enemies stronger as well does really 
change how the game is played, but making the enemies smarter will shift game play 
and challenge the player mentally, which should make for a more entertaining game.

The distinction between AI and PCG is, PCG is used to manipulate or generate 
content and AI is a programmed behavior set. We then use PCG to manipulate the 
AI as if it were content. In the example later in the chapter, you will see that we add 
new AI behaviors as our player progresses.

Setting up sprites
We will now add enemy scripts and set up sprites.

First on our agenda is setting up the Enemy prefab and script. Let's take a look at the 
Enemy prefab. The prefab was imported with all of the starting materials in Chapter 
2. Just in case you need an extra copy of the Enemy prefab though, there will be an 
import file in the accompanying Chapter 7 files.

The Enemy prefab looks a lot like the Player prefab. Both the Enemy and Player 
classes inherit from the Moving Object class. This means the enemy movement  
and animations are going to be processed in a similar way to the Player class.  
This generally means the prefab structure will have to be similar.



Chapter 7

[ 143 ]

Enemy Sprite

Requirements for our Enemy prefab include:

•	 A Sprite Renderer
•	 An Animator
•	 A Box Collider 2D
•	 A Rigid Body 2D
•	 The Enemy Script

Also, be sure that these options are selected in your Enemy prefab:

•	 Set the tag to Enemy
•	 Set the layer to BlockingLayer
•	 In the Sprite Renderer component, set the Sorting Layer field to Units
•	 In the Animator component, set the Controller field to use the Enemy 

Animator Controller

That's it for the Enemy prefab. All the magic is going to happen in the Enemy script. 
Go ahead and open the Enemy script for editing. You will see the following lines:

1 using UnityEngine;
2 using System.Collections;
3
4 public class Enemy : MovingObject
5 {
6   protected override bool AttemptMove <T> (int xDir, int yDir)
7   {
8     return true;
9   }
10
11  protected override void OnCantMove <T> (T component)
12  {
13  }
14 }



Adaptive Difficulty

[ 144 ]

The Enemy script is currently a placeholder. The movement cycle in the game is turn 
based. The player needs to play a turn by moving and only then is it the enemy's 
turn, and back to the player in a cycle. We added the enemy class at the beginning of 
our Roguelike game so that this turn-based system would be functional from the get 
go, hence the Enemy class placeholder. So, now, all we have to do is add the enemy 
functionality to the placeholder and the turn-based movement system will work as is.

We can now go ahead and add the enemy base functionality. Code Snip 7-1 shows 
what we need to add to get started with enemies in our game. The code snippet 
includes the movement functionality and what the enemy does when it is blocked 
from moving. This will be similar to the player's movement. Following the code 
snippet, we will take a look at the details of the code:

1 using UnityEngine;
2 using System.Collections;
3 
4 public class Enemy : MovingObject {
5
6   public int playerDamage;
7  
8   private Animator animator;
9   private Transform target;
10  private bool skipMove;
11
12  protected override void Start () {
13    GameManager.instance.AddEnemyToList (this);
14
15    animator = GetComponent<Animator> ();
16
17    target = GameObject.FindGameObjectWithTag  
      ("Player").transform;
18
19    base.Start ();
20  }
21
22  protected override void AttemptMove <T> (int xDir, int yDir) {
23    if(skipMove) {
24      skipMove = false;
25      return;
26    }
27
28    base.AttemptMove <T> (xDir, yDir);
29
30    skipMove = true;



Chapter 7

[ 145 ]

31  }
32
33  public void MoveEnemy () {
34    int xDir = 0;
35    int yDir = 0;
36
37    if(Mathf.Abs (target.position.x - transform.position.x) <  
      float.Epsilon)
38      yDir = target.position.y > transform.position.y ? 1 : -1;
39    else
40      xDir = target.position.x > transform.position.x ? 1 : -1;
41
42    AttemptMove <Player> (xDir, yDir);
43  }
44
45  protected override void OnCantMove <T> (T component) {
46    Player hitPlayer = component as Player;
47
48    hitPlayer.LoseHealth (playerDamage);
49
50    animator.SetTrigger ("enemyAttack");
51  }
52 }

The enemy will try to move towards the player and when the player is adjacent to 
the enemy the enemy will attack the player. The enemy movement AI is handled in 
the new MoveEnemy function. We will see how the enemy moves on its own as we go 
over the code in Code Snip 7.1:

•	 Lines 1-2: The Enemy class only requires UnityEngine and System.
Collections.

•	 Line 4: Be sure to inherit from the MovingObject class.
•	 Lines 8-10: The starting variable we need to get this class working is an 

Animator to control the animations, a Transform called target to be the 
player, and a bool called skipMove to slow the enemy down.

•	 Line 12: We will add a Start function to initialize everything.
•	 Line 13: We need to add the enemies to a list so we can keep track of them 

because there will likely be more than one on screen. The AddEnemyToList 
function has been in the GameManager class since Chapter 2, Roguelike Games 
but we haven't used it until now. The GameManager class will be in charge of 
the enemies and run their movement.



Adaptive Difficulty

[ 146 ]

•	 Line 17: Here, we set the target to the player. We want the enemies to know 
the position of the player at all times so that the enemies can chase the player.

•	 Lines 22-31: We are going to expand the AttemptMove function and make 
it so that the enemies aren't as fast as the player to start with. First, we check 
to see whether the skipMove variable is set to true, and if it is, we set it back 
to false and exit the function, effectively ending the enemies' turn without 
movement. If skipMove is false, then we call the base class AttemptMove 
function.

•	 Lines 33-43: This is a new function that the GameManager class will call 
when it is time to move the enemies. This function contains the AI logic of 
the Enemy class.

•	 Lines 34-35: The goal of the function is to record the direction of the player 
into xDir and yDir. We can only move one space at a time, though, so either 
xDir or yDir will get the 1/-1 value.

•	 Lines 37-40: The AI is basic. We want the enemy to move in the x direction 
towards the player. If the player and enemy are on the same x coordinate, 
then we want the enemy to move toward the enemy in the y direction. We  
do not take into account that the enemy can easily get stuck on a wall and  
get blocked from reaching the player. In fact, this is a desired effect as we 
want the player to be able to escape the enemy at the beginning when the 
player does very little damage.

•	 Line 42: Once the enemy has a direction, it will call its AttemptMove function.
•	 Lines 45-51: Last is our OnCantMove function. Our component is going to 

be the player and if we hit him, then we will call the Player.LoseHealth 
function to reflect the damage. We will also call an enemy attack animation.

Our enemy base functionality is all set up. Of course, that isn't enough. The Enemy 
class won't just move on its own, it needs some other structure to guide it. This 
structure would be the GameManager class. We should also be thinking about what 
will happen to the enemy once they are on the world board.

It is impossible for our player to walk on the black space surrounding our floor tiles 
because every step of the player generates new floor tiles. The same isn't true for 
enemies though. They will be able to walk anywhere unless we write the conditions 
to constrain them to the board. We will need to keep this under consideration as we 
spawn enemies on the world board.



Chapter 7

[ 147 ]

Enemy walking on black space

Adding enemies to the world board
As usual, we will need to generate the enemies at random to keep the player on their 
toes. We then need to address the issue of enemies being able to move through black 
space. We will also have to handle the event that an enemy moves off screen.

Let's start by adding the enemies to the world board. Open up the BoardManager.
cs script for editing. You can start by adding the line public GameObject enemy; 
under all the other public variables. This will be our Enemy prefab reference. Then, 
take a look at Code Snip 7.2 for the rest of the update:

1 private void addTiles(Vector2 tileToAdd) {
2   if (!gridPositions.ContainsKey (tileToAdd)) {
3    gridPositions.Add (tileToAdd, tileToAdd);
4    GameObject toInstantiate = floorTiles [Random.Range (0,  
     floorTiles.Length)];
5    GameObject instance = Instantiate (toInstantiate, new Vector3  
     (tileToAdd.x, tileToAdd.y, 0f), Quaternion.identity) as  
     GameObject;
6    instance.transform.SetParent (boardHolder);
7
8    if (Random.Range (0, 3) == 1) {
9      toInstantiate = wallTiles[Random.Range  
       (0,wallTiles.Length)];
10     instance = Instantiate (toInstantiate, new Vector3  
       (tileToAdd.x, tileToAdd.y, 0f), Quaternion.identity) as  
       GameObject;



Adaptive Difficulty

[ 148 ]

11     instance.transform.SetParent (boardHolder);
12    } else if (Random.Range (0, 50) == 1) {
13      toInstantiate = exit;
14      instance = Instantiate (toInstantiate, new Vector3  
        (tileToAdd.x, tileToAdd.y, 0f), Quaternion.identity) as  
        GameObject;
15      instance.transform.SetParent (boardHolder);
16    }
17    else if (Random.Range (0, 20) == 1) {
18      toInstantiate = enemy;
19      instance = Instantiate (toInstantiate, new Vector3  
        (tileToAdd.x, tileToAdd.y, 0f), Quaternion.identity) as  
        GameObject;
20      instance.transform.SetParent (boardHolder);
21    }
22  }
23 }

Code Snip 7.2 shows the full addTiles function from the BoardManager class with  
the addition of spawning enemies. Lines 17-21 show the additional check needed 
to randomly generate an enemy. So the player will walk and discover new areas of 
the world board, but just as random wall tiles appear, so too will enemies now.

We still need to handle when and where enemies can move. The simplest and 
probably the easiest solution to enemies moving over black space is to destroy  
them if they move into that area. We can piggyback on that idea and also destroy 
enemies if they move outside of the camera view. This way enemies that are not 
rendered will not have a turn to move and slow down the overall game.

To implement this functionality open up the GameManager.cs script for editing.  
We will be adding several small functions and updating others. Take a look at  
Code Snip 7.3 for the updates:

1 public void AddEnemyToList(Enemy script) {
2   enemies.Add(script);
3 }
4
5 public void RemoveEnemyFromList(Enemy script) {
6   enemies.Remove(script);
7 }
8
9 public bool checkValidTile (Vector2 pos) {
10  if (gridPositions.ContainsKey(pos)) {
11    return true;
12  }



Chapter 7

[ 149 ]

13  return false;
14 }
15 
16 IEnumerator MoveEnemies() {
17   enemiesMoving = true;
18    
19   yield return new WaitForSeconds(turnDelay);
20    
21   if (enemies.Count == 0)  {
22     yield return new WaitForSeconds(turnDelay);
23   }
24 
25   List<Enemy> enemiesToDestroy = new List<Enemy>();
26   for (int i = 0; i < enemies.Count; i++) {
27     if ((!enemies[i].getSpriteRenderer().isVisible) ||  
       (!boardScript.checkValidTile  
       (enemies[i].transform.position))) {
28       enemiesToDestroy.Add(enemies[i]);
29       continue;
30     }
31
32     enemies[i].MoveEnemy ();
33 
34     yield return new WaitForSeconds(enemies[i].moveTime);
35   }
36   playersTurn = true;
37   enemiesMoving = false;
38 
39   for (int i = 0; i < enemiesToDestroy.Count; i++) {
40     enemies.Remove(enemiesToDestroy[i]);
41     Destroy(enemiesToDestroy[i].gameObject);
42   }
43   enemiesToDestroy.Clear ();
44 }

The enemies list will be coming into play now. We add enemies to this list as they are 
generated, and then, on every move cycle, the GameManager class will loop through 
the list and move each enemy. Let's take a look at how this is done in the code:

•	 Lines 1-3: First, we need to define an AddEnemyToList function. This will 
be called by the Enemy class when an enemy is spawned.

•	 Lines 5-7: Next, we need to define a RemoveEnemyFromList function.  
We will call this whenever an enemy is destroyed by the player defeating it.



Adaptive Difficulty

[ 150 ]

•	 Line 9-14: The newly added checkValidTile function will take the 
position of an enemy and check to see whether that position is in the 
dictionary of visible floor tiles.

•	 Lines 16-43: Here, we have our definition for the MoveEnemies function. 
This function is a coroutine and is therefore declared to have the IEnumerator 
return type.

•	 Line 17: We want to prevent the player from moving while the enemies are 
moving, so we set the flag enemiesMoving. We will deactivate said flag after 
all the enemies are done with their movement.

•	 Line 18: We'll wait one increment of turnDelay with yield return regardless 
of how many enemies need to move.

•	 Lines 21-23: Next, we will run a check to make sure we have enemies in 
our list to move. If not, then we make the player wait one more increment 
of turnDelay. This second turn delay is to make the player wait the amount 
of time it would take a single onscreen enemy to move. If you add it up, the 
minimum move time is 0.2 seconds, which is just an arbitrary value that 
looks and feels adequate during game play.

•	 Line 25: enemiesToDestroy will be a secondary list that will track 
the enemies that we need to remove from the game after their move is 
completed. Directly removing enemies from the enemies list while in  
a loop might result in our loop trying to access items that are no longer  
there. So instead, we will use a separate list to help us keep track of our 
destroyed enemies.

•	 Lines 26-35: The for loop will cycle through all our onscreen enemies  
and begin by checking whether they are visible to the camera and that they 
are standing on a valid tile. If either of those are false, then that enemy 
is placed in the enemiesToDestroy list and the loop starts with the next 
iteration. Otherwise, the enemy moves a single space and waits for the 
normal turn delay.

•	 Lines 36-37: After the enemy movement is complete, we reset the 
playerTurn and enemiesMoving flags so the player has control again.

•	 Lines 39-43: Lastly, we loop through the enemiesToDestroy list and 
remove enemies from the enemies list. We also destroy those GameObjects. 
Then, we clear the enemiesToDestroy list just to make sure it takes up no 
more memory.



Chapter 7

[ 151 ]

And that should do it for our enemy and world board spawning implementation.  
We can give this a test simply by playing the game. Enemies should randomly spawn 
in new revealed areas and attempt to move towards the player. They should also 
permanently vanish if they move completely off screen or into the black outer area.

Enemies on world board

Still, no place is safe for the player. We want to also spawn enemies on the Dungeon 
Board that we generated in Chapter 4, Generating Random Dungeons. This will pose a 
different challenge as the dungeon is a fixed, enclosed area. There will be no black 
space accessible to the enemies and it wouldn't make as much sense to delete them 
when they move off screen.

Adding enemies to the Dungeon Board
There are a few things to consider when switching to the Dungeon Board and 
spawning new enemies. First, we need to determine what will happen when the 
enemies are off screen. On the world board, we simply destroyed the enemies.  
We can justify this action because new enemies will be generated as the player 
discovers new tiles on the world board. However, the player doesn't generate  
new tiles with movement in the dungeon.

For simplicity, we'll want to generate the dungeon enemies at the same time we 
generate the dungeon. This means that most enemies generated in a dungeon are 
generated off screen. If we kept the same offscreen check we had for the world 
board, we would end up generating enemies and then destroying most of them 
before the player had a turn to move. Instead, we'll just disable the movement of 
offscreen enemies while in the dungeon.



Adaptive Difficulty

[ 152 ]

We will also have to figure out what to do with the enemies left on the world board 
when we enter the dungeon and vice versa. In order to keep the number of enemies 
that we track to a minimum, it might be in our best interest to destroy enemies left 
on the world board as we enter a dungeon. And since we cannot re-enter a dungeon 
once we exit, it makes sense that we destroy all the enemies left in a dungeon as we 
return to the world board.

So, now that we have a plan, let's implement the functionality that will spawn 
enemies in our dungeons. We can begin with the DungeonManager class so open  
the DungeonManager.cs file for editing. Code-Snip 7.4 shows the changes needed  
for this feature:

1 public enum TileType {
2   essential, random, empty, chest, enemy
3 }
4
5 private void BuildRandomPath () {
...

6        if (!gridPositions.ContainsKey(newRPathPos)) {
7          if (Random.Range (0, 20) == 1) {
8            gridPositions.Add (newRPathPos, TileType.enemy);
9          } else {
10            gridPositions.Add (newRPathPos, TileType.empty);
11          }
12
13          PathTile newRPath = new PathTile (TileType.random,  
            newRPathPos, minBound, maxBound, gridPositions);
14          pathQueue.Add (newRPath);
15        }
16      }
17    }
18  });
19 }

In Code Snip 7.4, we first add the enumeration enemy to TileType. We use this 
enumeration to discern information about the format of our generated dungeon. 
Then, we make a small change to the BuildRandomPath function. Take note that  
the full BuildRandomPath function is not present in Code Snip 7.4:

•	 Lines 7-10: We add another condition that gives us the chance to place a 
tile marked as TileType enemy. The BoardManager class will see this tile 
and place an enemy on it.



Chapter 7

[ 153 ]

That's all for the DungeonManager class. We added a new TileType though, and 
those are also used by the BoardManager class to place tile on the boards. So let's 
open the BoardManager.cs script for editing. Code Snip 7.5 shows the change needed 
to handle the enemy TileType enum:

1 public void SetDungeonBoard (Dictionary<Vector2,TileType>  
  dungeonTiles, int bound, Vector2 endPos) {
2  boardHolder.gameObject.SetActive (false);
3  dungeonBoardHolder = new GameObject ("Dungeon").transform;
4  GameObject toInstantiate, instance;
5
6  foreach(KeyValuePair<Vector2,TileType> tile in dungeonTiles) {
7    toInstantiate = floorTiles [Random.Range (0,  
     floorTiles.Length)];
8    instance = Instantiate (toInstantiate, new Vector3  
     (tile.Key.x, tile.Key.y, 0f), Quaternion.identity) as  
     GameObject;
9    instance.transform.SetParent (dungeonBoardHolder);
10
11    if (tile.Value == TileType.chest) {
12      toInstantiate = chestTile;
13      instance = Instantiate (toInstantiate, new Vector3  
        (tile.Key.x, tile.Key.y, 0f), Quaternion.identity) as  
        GameObject;
14      instance.transform.SetParent (dungeonBoardHolder);
15    }
16    else if (tile.Value == TileType.enemy) {
17      toInstantiate = enemy;
18      instance = Instantiate (toInstantiate, new Vector3  
        (tile.Key.x, tile.Key.y, 0f), Quaternion.identity) as  
        GameObject;
19      instance.transform.SetParent (dungeonBoardHolder);
20    }
21  }
...

The only change we need to make will take place in the SetDungeonBoard function. 
Note that Code Snip 7.5 does not show the whole function. On lines 16-20, we will 
need to check whether the tile has spawned an enemy and if so, we place that enemy 
on the board.



Adaptive Difficulty

[ 154 ]

Lastly, we need to run everything in the GameManager class. We will be handling 
where the enemies are spawned and when they are cleaned up here. Go ahead and 
open the GameManager.cs script for editing. Code Snip 7.6 shows the changes we will 
be making:

1 private bool playerInDungeon;
2
3 void InitGame() {
4   enemies.Clear();
5   boardScript.BoardSetup();
6   playerInDungeon = false;
7 }
8
9 IEnumerator MoveEnemies() {
10  enemiesMoving = true;
11  yield return new WaitForSeconds(turnDelay);
12  if (enemies.Count == 0) {
13    yield return new WaitForSeconds(turnDelay);
14  }
15  List<Enemy> enemiesToDestroy = new List<Enemy>();
16  for (int i = 0; i < enemies.Count; i++) {
17    if (playerInDungeon) {
18      if ((!enemies[i].getSpriteRenderer().isVisible)) {
19        if (i == enemies.Count - 1)
20          yield return new WaitForSeconds(enemies[i].moveTime); 
21        continue;
22      }
23    } else {
24      if ((!enemies[i].getSpriteRenderer().isVisible) ||  
        (!boardScript.checkValidTile  
        (enemies[i].transform.position))) {
25        enemiesToDestroy.Add(enemies[i]);
26        continue;
27      }
28    }
...
29 public void enterDungeon () {
30   dungeonScript.StartDungeon ();
31   boardScript.SetDungeonBoard (dungeonScript.gridPositions,  
     dungeonScript.maxBound, dungeonScript.endPos);
32   playerScript.dungeonTransition = false;
33   playerInDungeon = true;
34
35  for (int i = 0; i < enemies.Count; i++) {



Chapter 7

[ 155 ]

36    Destroy(enemies[i].gameObject);
37  }
38  enemies.Clear ();
39 }
40
41 public void exitDungeon () {
42   boardScript.SetWorldBoard ();
43   playerScript.dungeonTransition = false;
44   playerInDungeon = false;
45   enemies.Clear ();
46 }

Let's jump right in to what's happening in Code Snip 7.6:

•	 Line 1: We are adding a bool variable to flag when the player is in a 
dungeon. We are going to need this to determine whether we want to  
stop the movement of offscreen enemies and destroy them, removing  
them from the game

•	 Line 6: Inside the InitGame function, we are going to set the 
playerInDungeon variable initially to false, since we always start  
on the world board.

•	 Lines 17-23: In the MoveEnemies function, we are going to create a 
conditional statement that if playerInDungeon is true, then we want  
to simply halt the enemy movement until they are back on screen.  
Otherwise, we add them to the destroy list.

•	 Lines 19-20: This nested condition is important. If we are in the dungeon 
and all of the enemies are off screen (when we first enter, this will most likely 
be the case) we need to add a time delay. This condition will cause a time 
delay on the very last enemy to go through the check. If this condition wasn't 
present, we would see the player moving too fast and taking half steps that 
cause a recalculation and jitter effect.

•	 Line 33: During the enterDungeon function is when we will set the 
playerInDungeon to true.

•	 Lines 35-38: When we enter a dungeon, we'll want to clear all the  
enemies from the world board.

•	 Line 40: During the exitDungeon function is when we will set the 
playerInDungeon to false.

•	 Line 45: Since the Dungeon Board is completely destroyed upon exiting,  
all we need to do to clean up the enemies is clear the list.



Adaptive Difficulty

[ 156 ]

And now we have enemies spawning on the Dungeon Board as well. We can give 
this a quick test by playing the game and entering a dungeon. You should check 
whether you can move far enough away from an enemy to place it off screen  
and discontinue its movement. You can then move back and see that the enemy 
remained in place.

Enemies on Dungeon Board

There are now plenty of enemies in our game to challenge the player. However, at 
the moment, the player can only flee. We made awesome modular weapons in the 
previous chapter for this very reason, so it's time to put them to work.

Fighting the enemy
For this feature, we will need to modify the way the player interacts with his 
environment one last time. We initially implemented the player Update function  
to interact with only wall tiles. We then needed the player to interact with chest tiles 
so we forced our AttemptMove function to take a wall type on the world board and a 
chest type on the Dungeon Board. We have yet another tile type that the player can 
interact with.

We will need to devise a new system that will extract the type of tile the player is 
interacting with and call AttemptMove correctly. This won't be too difficult though. 
The changes we need to make will take place in the Player.cs script, so open that 
up for editing. Then, take a look at Code Snip 7.8 to see what has changed:

1 private void Update () {
2   if(!GameManager.instance.playersTurn) return;
3   int horizontal = 0;
4   int vertical = 0;



Chapter 7

[ 157 ]

5   bool canMove = false;
6   horizontal = (int) (Input.GetAxisRaw ("Horizontal"));
7   vertical = (int) (Input.GetAxisRaw ("Vertical"));
8    
9   if(horizontal != 0) {
10    vertical = 0;
11  }
12    
13  if(horizontal != 0 || vertical != 0) {
14    if (!dungeonTransition) {
15      Vector2 start = transform.position;
16      Vector2 end = start + new Vector2 (horizontal, vertical);
17      base.boxCollider.enabled = false;
18      RaycastHit2D hit = Physics2D.Linecast (start, end,  
        base.blockingLayer);
19      base.boxCollider.enabled = true;
20      if (hit.transform != null) {
21        switch(hit.transform.gameObject.tag) {
22        case "Wall":
23          canMove = AttemptMove<Wall> (horizontal, vertical);
24          break;
25        case "Chest":
26          canMove = AttemptMove<Chest> (horizontal, vertical);
27          break;
28        case "Enemy":
29          canMove = AttemptMove<Enemy> (horizontal, vertical);
30          break;
31        }
32      } else {
33        canMove = AttemptMove<Wall> (horizontal, vertical);
34      }
...
35
36 protected override void OnCantMove <T> (T component) {
37   if (typeof(T) == typeof(Wall)) {
38     Wall blockingObj = component as Wall;
39     blockingObj.DamageWall (wallDamage);
40   }
41   else if (typeof(T) == typeof(Chest)) {
42    Chest blockingObj = component as Chest;
43    blockingObj.Open ();
44   }
45   else if (typeof(T) == typeof(Enemy)) {
46     Enemy blockingObj = component as Enemy;



Adaptive Difficulty

[ 158 ]

47     blockingObj.DamageEnemy (wallDamage);
48   }
49    
50  animator.SetTrigger ("playerChop");
51    
52  if (weapon) {
53    weapon.useWeapon ();
54  }
55 }

We first handle when we call AttemptMove in the Update function. We need to be 
able to figure out which tile is blocking us and whether we can attack it. Then, we 
update the OnCantMove function and add what happens when we hit an enemy.  
Let's take a look at the details:

•	 Lines 1-34: This is our update function though it is only partial.
•	 Lines 15-31: Here is the new functionality we need to call  

AttemptMove correctly.
•	 Lines 15-19: This is a redundant implementation that mimics what happens 

in the MovingObject class. We need to know what is in front of the player at 
this point so that we can give AttempMove the correct tile type. If there is an 
object in front of the player, RaycastHit2D will return it into hit.

•	 Lines 20-31: If there is an object in hit, we want to enter a switch that will 
look at the tag of the object and make the corresponding AttemptMove call.

•	 Lines 45-48: Lastly, inside the OnCantMove function, we add a condition 
that when the player hits an enemy, we cause damage to that enemy.

Finally, we have added the enemy component to the game. In PCG fashion, the 
enemies randomly spawn and the player can flee or fight them. Now is a good time 
for you to take a play test. Try getting as far as you can and remember that if your 
health drops to 0, the game will end.



Chapter 7

[ 159 ]

Attacking an enemy

We are not done yet. We want to use PCG to shift the difficulty of the game. We can 
easily make the enemies that are generated hit harder and take more damage, but 
that won't change how the player plays the game. It would be more interesting for 
the player if we were able to create a new environment to adapt to.

Adaptive difficulty
Adaptive difficulty can be a content generation solution by having enemies carry 
improved equipment or changing enemy properties such as color and textures.  
It can also be an Artificial Intelligence question. This is similar to choosing the hard 
mode at the beginning of a game except, you, the game creator, determine when to 
engage the hard mode based on some gameplay aspect.

We have already done things such as swapping sprites and changing colors based 
on strength, so we will be exploring the AI route. We will determine what it takes 
to adapt the difficulty to the player by changing the AI of the enemy. Eventually, 
the player will become so strong that one hit from the player will destroy an enemy. 
So, we want the enemies to be capable of overwhelming the player by getting to the 
player faster, more efficiently, and in greater numbers.



Adaptive Difficulty

[ 160 ]

In order to do this, we will need to adjust the AI capabilities in the Enemy class. 
But first, we will set-up the flags that will determine when and how the difficulty 
advances. We will start in the GameManager.cs script. Add the following variables  
in Code Snip 7.9:

1 public bool enemiesFaster = false;
2 public bool enemiesSmarter = false;
3 public int enemySpawnRatio = 20;

The variables in Code Snip 7.9 signify the various advances in difficulty. 
enemiesFaster will trigger enemies to no longer skip a turn. enemiesSmarter will 
trigger the use of a more efficient enemy pathfinding algorithm. enemySpawnRatio 
will make it so enemies appear at a higher frequency.

We need to implement the actual trigger events for these flags now. Every difficulty 
advancement event is triggered by the player getting stronger. So, we will be placing 
the event handlers in the Player.cs script. Code Snip 7.10 shows the changes needed 
to run the adaptive difficulty events:

1 private void AdaptDifficulty () {
2   if (wallDamage >= 10)
3     GameManager.instance.enemiesSmarter = true;
4   if (wallDamage >= 15)
5     GameManager.instance.enemiesFaster = true;
6   if (wallDamage >= 20)
7     GameManager.instance.enemySpawnRatio = 10;
8 }
9   
10 private void OnTriggerEnter2D (Collider2D other) {
11   if (other.tag == "Exit") {
12     dungeonTransition = true;
13     Invoke ("GoDungeonPortal", 0.5f);
14     Destroy (other.gameObject);
15   } else if (other.tag == "Food" || other.tag == "Soda") {
16    UpdateHealth(other);
17    Destroy (other.gameObject);
18  } else if (other.tag == "Item") {
19    UpdateInventory(other);
20    Destroy (other.gameObject);
21    AdaptDifficulty ();
22  } else if (other.tag == "Weapon") {
23    if (weapon) {
24      Destroy(transform.GetChild(0).gameObject);
25    }



Chapter 7

[ 161 ]

26    other.enabled = false;
27    other.transform.parent = transform;
28    weapon = other.GetComponent<Weapon>();
29    weapon.AquireWeapon();
30    weapon.inPlayerInventory = true;
31    weapon.enableSpriteRender(false);
32    wallDamage = attackMod + 3;
33    weaponComp1.sprite = weapon.getComponentImage(0);
34    weaponComp2.sprite = weapon.getComponentImage(1);
35    weaponComp3.sprite = weapon.getComponentImage(2);
36    AdaptDifficulty ();
37  }
38 }

The event handling for adapting the difficulty to the player's strength is pretty  
straightforward. First, we add a function called AdaptDifficulty, which will  
hold the cases for each difficulty advancement. Then, we add that function call  
to whenever the player powers up, which for our game is when the player picks  
up an item or weapon. Let's see how this is done in the code:

•	 Lines 1-8: This is the AdaptDifficulty event handler function. We are 
watching to see the amount of damage the player can deal out. At a damage 
of 10, the enemies are shifted to a better AI; at 15, the enemies no longer skip 
a turn; and at 20, the enemies spawn more frequently.

•	 Lines 10-38: The OnTriggerEnter2D function is used to handle item and 
weapon pickups.

•	 Line 21: We add the AdaptDifficulty function call on an item pickup 
because we will be calculating a new player damage here.

•	 Line 36: We also add the AdaptDifficulty function call on a weapon 
pickup because we will be calculating a new player damage here as well.

Finally, we need to implement the actual events including the better AI functionality. 
To start off, we should discuss how we plan to implement the said better AI. Luckily, 
the current AI isn't very complex and improving it won't be difficult.



Adaptive Difficulty

[ 162 ]

Enemy AI
The current AI can be viewed in the Enemy.cs script under the MoveEnemy function. 
The AI performs a check on the player position. If the enemy is on the same x 
coordinate as the player, then the enemy will move towards the player in the y 
direction. Otherwise, the enemy will move towards the player in the x direction.

Diagram of simple enemy movement

This means that the enemy doesn't try to get around walls. The enemy is easily  
stuck making it fairly easy for the player to flee. This is perfect in the beginning 
of the game when the player does very little damage. So our objective is to make 
it harder for the player to flee when the player becomes strong enough to take on 
enemy encounters.

Enemy stuck on wall

We have an event that will make the enemy move every turn the player moves.  
This will decrease the opportunity the player has to get an enemy stuck behind a 
wall. Then, all our improved AI has to do is add some checks that will allow our 
enemy to navigate around walls. We can also perform some simple pathfinding  
that will have our enemy seek to close the distance between it and the player.



Chapter 7

[ 163 ]

Let's begin by selecting a more effective move an enemy can make. The player will 
be some distance away from the enemy on both the x and y axes. Neither the player 
nor the enemy can move diagonally, so we can calculate the distance between them 
on the x axis separate from the y axis. Once we know how many spaces we need 
to move horizontally and vertically to get to the player, we can make an informed 
decision on which direction we should take.

Player is 1 space away horizontally and 2 away vertically so enemy moves vertically

The path with the greater distance will be the preferred path because we want the 
enemy to reach the player as fast as he can. After we have chosen a direction, we 
need to check that the enemy isn't going to hit anything in that direction. So, we'll 
check the neighbor cell and see what's in the enemy's way. If there's an obstacle,  
then we will switch to the next best direction.

Enemy going around wall



Adaptive Difficulty

[ 164 ]

For simplicity, we'll only go as far as giving the enemy two attempts to pick the best 
path. As discussed earlier in the book, pathfinding can be a very complex topic on its 
own. This algorithm alone will make for a much more challenging game already.

Smarter enemy getting stuck on a wall after two attempts of picking the best path

Finishing up
So, now that we know what we want to accomplish, let's begin the implementation. 
Open the Enemy.cs script for editing. Code Snip 7-10 shows the changes needed for 
our adaptive difficulty:

1 protected override bool AttemptMove <T> (int xDir, int yDir) {
2   if(skipMove && !GameManager.instance.enemiesFaster){
3     skipMove = false;
4     return false;
5   }
6   base.AttemptMove <T> (xDir, yDir);
7    
8   skipMove = true;
9   return true;
10 }
11  
12 public void MoveEnemy () {
13  int xDir = 0;
14  int yDir = 0;
15
16  if (GameManager.instance.enemiesSmarter) {
17    int xHeading = (int)target.position.x -  
      (int)transform.position.x;
18    int yHeading = (int)target.position.y -  
      (int)transform.position.y;
19    bool moveOnX = false;
20



Chapter 7

[ 165 ]

21    if (Mathf.Abs(xHeading) >= Mathf.Abs(yHeading)) {
22      moveOnX = true;
23    }
24    for (int attempt = 0; attempt < 2; attempt++) {
25      if (moveOnX == true && xHeading < 0) {
26        xDir = -1; yDir = 0;
27      }
28      else if (moveOnX == true && xHeading > 0) {
29        xDir = 1; yDir = 0;
30      }
31      else if (moveOnX == false && yHeading < 0) {
32        yDir = -1; xDir = 0;
33      }
34      else if (moveOnX == false && yHeading > 0) {
35        yDir = 1; xDir = 0;
36      }
37
38      Vector2 start = transform.position;
39      Vector2 end = start + new Vector2 (xDir, yDir);
40      base.boxCollider.enabled = false;
41      RaycastHit2D hit = Physics2D.Linecast (start, end,  
        base.blockingLayer);
42      base.boxCollider.enabled = true;
43
44      if (hit.transform != null) {
45        if (hit.transform.gameObject.tag == "Wall" ||  
          hit.transform.gameObject.tag == "Chest") {
46          if (moveOnX == true)
47            moveOnX = false;
48          else 
49            moveOnX = true;
50        } else {
51          break;
52        }
53      }
54    }
55
56  } else {
57    if (Mathf.Abs (target.position.x - transform.position.x) <  
      float.Epsilon)
58      yDir = target.position.y > transform.position.y ? 1 : -1;
59    else
60.      xDir = target.position.x > transform.position.x ? 1 : -1;
61  }
62  AttemptMove <Player> (xDir, yDir);
63
64 }



Adaptive Difficulty

[ 166 ]

We'll start by handling the enemy speed-up event. Then, we'll move on to discuss  
the improved AI event. Let's take a look at the details of the implementation in  
Code Snip 7.10:

•	 Line 2: We are adding a second condition to the move skip of the enemy. 
We will also be checking whether the enemyFaster flag has been set and  
if so, we do not skip a move.

•	 Line 16: We are going to start things off in the MoveEnemy function by 
checking whether the enemySmarter flag has been set. If so, we will move 
into our better pathfinding algorithm for our Enemy class.

•	 Lines 17-18: We'll calculate the distance from the player to the enemy on 
the x and y axis . This can be a negative value, which will tell us if we need 
to move left (negative x) or down (negative y). A positive value is right 
(positive x) or up (positive y).

•	 Line 19: The moveOnX bool variable will tell us if we need to move 
horizontal (true) or vertical (false).

•	 Lines 21-23: Here, we will check the magnitude of the x and y distances. 
Remember, we want the enemy to try to take the longer of the two distances 
to close the gap between the enemy and player.

•	 Line 24: We want to only make two attempts at picking an optimal path, so 
we set a for loop to run the decision-making process a second time, if need be.

•	 Lines 25-36: This block will determine which direction the enemy will 
move in. The moveOnX variable will tell the enemy to move horizontally  
or not. The xHeading and yHeading will tell the enemy to move in the 
positive or negative direction.

•	 Lines 38-42: We then check whether there is a wall in the way of the 
direction we have chosen to move in. We do this with RayCastHit2D in  
the same manner we have done in the Player and MovingObject classes.

•	 Lines 44-53: Lastly, we are going to check whether we hit anything by 
checking the transform of the hit variable. If we did hit something, we need 
to determine whether it is a wall or chest because otherwise, we hit the 
player. If we did hit a wall or chest, we are going to switch the moveOnX 
variable to try a different direction of movement. If we didn't hit anything  
or we hit the player, we break our for loop and continue with the rest of  
the game execution.

We have just a few more changes to make. In order for this algorithm to work 
properly in the dungeon, we need to set the OuterWall prefabs' tag to Wall.  
We also need to handle the increased frequency of spawning enemy events.  
This will be done in the BoardManager.cs script.



Chapter 7

[ 167 ]

We only need to change one line in the BoardManager.cs script. Inside the 
addTiles function, change the line else if (Random.Range (0,20) == 1) to 
else if (Random.Range (0, GameManager.instance.enemySpawnRatio) == 
1). This makes the enemy spawn ratio based on the GameManager variable that will 
change as the player gains strength.

With all of that complete, you can test the full adaptive difficulty functionality. You 
first need to survive long enough to get a weapon and high-level items to trigger 
the adaptive difficulty. You can use the Inspector tab to verify that all the flags have 
been set and you can visually verify that the algorithms have taken effect.

Summary
You are just about finished with our PCG 2D Roguelike game! In this chapter, we added 
the component of enemy opposition and made the difficulty scale with the player.

In this chapter, you added enemies to the game that inherited the same base class  
as the Player class. In PCG fashion, you spawned the enemies at random and had 
to handle destroying the enemies at the appropriate times. You set up monitoring of 
the player to scale the difficulty. Instead of just upping the hit points or strength of 
the enemies to scale the difficulty, you made them faster and smarter by developing 
a more efficient AI.

We did quite a bit in this chapter, but there is a lot more that we can still do to improve 
the system. You should continue experimenting with adaptive difficulty. See how 
much you can improve the AI to make smart enemies with better pathfinding and 
possibly wall breaking like the player. You can also use randomness to determine 
how smart an enemy is. Then, you can differentiate between the types of enemies 
by changing the sprite or the color. Also, don't forget that the player has a Defense 
modifier that can be utilized.

The gameplay of our game is relatively complete. It is time to give it some personality 
with sound. We are going to step into the more conceptual realms of PCG by making 
music based on randomness and the player's actions. The next chapter will be the 
completion of our 2D Roguelike game.





[ 169 ]

Generating Music
In this chapter, we are finishing up our Roguelike game with the final addition  
of music. There is still plenty of polishing we can do to the game, such as adding 
stories or quests, other game sounds, and opening/closing screens. However, the 
extras can be left to you to finish with your newly acquired knowledge of PCG.

Music is one of the more theoretical subjects we can attempt to procedurally 
generate. We need general knowledge of how to procedurally generate content and 
we also need knowledge of music theory so that we can construct a coherent melody. 
Don't worry, though; we will go through the steps that will give us the information 
that we need to tackle this task. Here's what you will learn in this chapter:

•	 Simple music theory
•	 Create an algorithm from a new theory
•	 Modularizing code when working with a new subject

Those of you who have a background in music might already have the knowledge 
needed to complete this chapter. However, for those who do not, we will be covering 
a basic theory of music. We will only be covering enough music theory to complete 
the chapter, so feel free to do your own research and go more in depth. Now, let's get 
started with our final Roguelike game chapter!

Concept of music
Music has existed for many years. It's prehistoric to be precise, and has evolved  
into a very complicated construct. Even though it is complicated and could take  
you many years of education to master, music can be very formulaic. The fact that 
we can abstract the idea of music as a formula is what will allow us to make an 
algorithm to generate it.



Generating Music

[ 170 ]

Tempo
The first thing we need to understand is that a song will follow a tempo. The tempo 
of a song is the speed at which the song progresses. Every sound within the song 
falls within some range of the tempo by an equal measure. That measure is usually 
at pace with the tempo, at 1/4th, at 1/8th, or at 1/16th. The tempo as seen in the 
following figure:

Visualization of tempo

This might sound strange if you have never heard it before. We can visualize each 
sound following a tempo as dots on a line or in a graph. The tempo can be seen as a 
vertical line that moves in the positive direction on the x axis. Each time the tempo 
line intersects a sound dot, the sound will play.

The tempo line moves at a constant rate, but the sound dots can be placed farther 
apart or closer together. The sound dots are usually placed within the tempo time 
frame in a uniform distribution. Having your sounds play uniformly with a tempo 
creates a harmony to your song.

We can think of the tempo as a simple timer. Timers are widely used in game 
development, so if you haven't been exposed to them, you will learn about them  
in this chapter. We can set a timer to count down from a set interval and at the  
end of the timer's life, we play a sound. This will be the basis of our tempo.



Chapter 8

[ 171 ]

Melody
In a song, the melody is the placement of sounds usually following a tempo that 
creates an interesting melodic sound as a whole. We will use our tempo timer to  
play sounds at certain times to create our melody. However, it won't be enough  
to simply play a sound on a timer.

We will need to vary exactly when and for how long the sound is played within  
the tempo to make a more interesting melody. Playing sounds at random within the 
tempo won't work well, as we'll find out later in the chapter with our first attempt at 
generating music. In order to create a melody that isn't so dissonant that it disturbs 
the player, we need to play our sounds at equal measures of the tempo.

In the following figure, we see a coordinate plane where the x-axis is time. Our 
tempo moves along the x axis as time increases. When the tempo intersects with a 
plotted sound dot, that sound will play. All of the dots are plotted on the x axis, but 
we vary the y coordinate so that it is easier to read as sounds will sometimes overlap.

Visualization of tempo divisions

This is where the idea of playing sounds at 1/4th, 1/8th, and 1/16th of the tempo 
comes in. We will equally space out our sounds at some division of the tempo timer 
to keep our melody harmonious. But then, we need to consider the sounds that we 
are playing as well.



Generating Music

[ 172 ]

We will need a variety of sounds to make our song, as we need a variety of art assets 
to make a game. Also, in PCG we want to reuse as much as we can, like we did with 
art, so that we can make the most out of a small amount of sounds. Luckily, there are 
some simple ways to get the most out of a few sounds.

First, we can vary the length of time for which the sound is played, as shown in 
the following figure. We will be using some sounds that can be sustained for long 
periods or played at short intervals. Second, we will be varying the pitch that will 
change the note at which the sound is played. This will raise and lower the tone of 
the sound, which is generally used in music to make interesting melodies.

Visualization of sound length variations

Repetition
Most music follows some sort of repetition. Usually, the song will repeat sections 
of the song in a pattern, such as VCVC. The V represents a verse where the music 
will vary in structure and the C represents a chorus where the music structure is 
consistent. We will simply use the idea of repetition as an excuse to repeat our  
simple melody.

We will construct a single section of music, such as a verse, and loop it. This will 
make the song, as a whole, less interesting but this is the desired effect. With 
the single verse of the song repeating, the tone of the song will become more 
atmospheric and blend into the background. This way, the player isn't overly 
distracted by the music in the game.



Chapter 8

[ 173 ]

So now that we know the basics of tempo, melody, and repetition, we are ready to 
put together a simple song. Since we are generating our song procedurally, we will 
need to plan out an algorithm, as we have done before. Keep in mind that this will  
be a small subset of what it can be.

A great example of a more complex procedural music generator can 
be experienced at http://abundant-music.com/. You can play 
around with this tool and get inspired to make some procedurally 
generated music.

Procedurally generated music algorithm
The design of our algorithm will start with the tempo. As stated before, we can 
abstract a simple timer into our tempo concept. So we will set a timer at a random 
interval. When the timer hits 0, then we will play our sound and reset the timer.

This seems simple enough but there is something to consider, the play length of the 
sound. We are going to vary the play lengths of our sounds, so we need to keep a track 
of when and for how long the sound will play. We can easily throw off our timer, and 
as a result, have some sounds playing at different times when the song loops.

Measure
We can imagine the whole song fitting in a single structure that we will call a 
measure. The measure is the entire time frame of the song before it loops. In order  
to keep the tempo, we will divide the measure time frame into subsections where  
our sounds will play.

The following image is a visualization of our measure. There are three horizontal 
sections that represent the separate sounds that will play in their own time frame. 
The tempo will move from left to right as the time increases from zero to t (how ever 
long we like).

Visualization of the measure with sounds

http://abundant-music.com/


Generating Music

[ 174 ]

By confining our sounds to a constant time frame, we will increase the harmony of 
the overall song. We don't need the song to be too harmonious as it is meant to be 
atmospheric and a little creepy. However, the measure will ensure our song doesn't 
lose timing and transform itself overtime, which may be a little jarring for the player.

Dividing the measure
For simplicity's sake, our song will consist of three distinct sounds. Feel free to add 
more sounds, if you like. The measure will be divided uniquely for each sound. We 
will do a little math to divide the measure so that the sound frequency and play time 
fits correctly.

Measure with sound division

We can choose at random how many times the sound is played in the measure.  
Then, we will need to determine the play length of the sound instances. We can  
let the sounds play at random lengths within a subdivision of the measure. If we 
divide the measure by the number of times the sound is played, then we can allow 
the sound to play no longer than that division.

Measure with random sound lengths



Chapter 8

[ 175 ]

The space in between (the white space in the preceding figure) the sound play length 
is then added together and divided equally. This division will create uniform periods 
in which the sound is not being played. All of this will ensure that the sound line fits 
well within the measure and utilizes the space appropriately.

The interval in which sound is not played

Within a single measure, we can add multiple lines of sound that are divided 
individually to fit the measure. The layering of different sounds following our timer 
tempo and playing within the same measure will create our song. We can then easily 
manipulate the pitch each time the sound is played to create a variation in the sound.

So, at this point, our algorithm is pretty well defined. We now need to translate it to 
code. We can start with a single sound and work our way through it from there.

The base line
The base line will be our naturally low-pitched sound. We will create this line of bass 
sounds within a measure division using a single bass sound. But first, we need to set 
up our script, which will be our SoundManager script.

Setting up the script
Let's first set up the GameObject that will manage the sounds that will make up 
our game music. We are going to make a SoundManager class that is a lot like our 
GameManager class. You can make the Sound Manager using the following steps:

1.	 Create a new empty GameObject.
2.	 Name the new GameObject Sound Manager.
3.	 Add three audio source components to the Sound Manager GameObject.



Generating Music

[ 176 ]

After you have the Sound Manager GameObject, we will need to import some 
sounds. You can find the three main sounds we will use for this chapter in the 
accompanying files under Chapter 8. Create a new folder called Sounds and  
import sound1.wav, sound2.wav, and sound3.wav into the Sounds folder.

Then, return to the Sound Manager GameObject and add each sound to the  
Audio Clip section of the three audio sources. That is all we need to do right  
now for the Sound Manager setup. It is important to note that two of the three 
sounds that we are using have a particular quality to them.

All three sounds were created using an online 
synthesizer called AudioSauna, which can be found 
at http://www.audiosauna.com/studio/.

Both sound1.wav and sound2.wav were recorded for a longer time frame (about 7 
seconds) because the sounds' wave form can be infinite. That means, we can play 
these sounds at a constant rate for some time as opposed to sound3.wav, which will 
dampen on its own after some time.

The Sound Manager script
Now that we are all set up, we are ready to write the script. Create a SoundManager.
cs script in the Scripts folder. Then, open the script for editing. Code Snip 8.1 shows 
our new SoundManager class. As a warning, the following code snippet is not our 
final product and we will be improving it throughout the chapter:

1 using UnityEngine;
2 using System;
3 using System.Collections;
4 using Random = UnityEngine.Random;
5
6 public class SoundManager : MonoBehaviour {
7
8   public static SoundManager instance = null;
9
10  public AudioSource highSource;
11  public AudioSource midSource;
12  public AudioSource lowSource;
13
14  public float lowPitchRange = 0.0f;
15  public float highPitchRange = 0.0f;
16
17  public float measure = 0.0f;

http://www.audiosauna.com/studio/


Chapter 8

[ 177 ]

18
19  public float[] basePlayTime;
20  public float basePlayTimer = 0.0f;
21  public float baseInterval = 0.0f;
22  public float baseIntervalTimer = 0.0f;
23  public int baseCords;
24  private float[] basePitchRanges;
25  public int basePitchRangeCount = 0;
26
27  void Awake() {
28    if (instance == null)
29      instance = this;
30    else if (instance != this)
31      Destroy(gameObject);
32
33    DontDestroyOnLoad(gameObject);
34
35    lowPitchRange = 0.25f;
36    highPitchRange = 1.75f;
37
38    Init();
39  }
40
41  void Update() {
42
43    PlaySoundLine(lowSource,
44      basePlayTime,
45      ref basePlayTimer,
46      baseInterval,
47      ref baseIntervalTimer,
48      baseCords,
49      basePitchRanges,
50      ref basePitchRangeCount);
51  }
52
53  private void Init() {
54
55    measure = Random.Range(3.0f, 20.0f);
56    float playTotal = 0.0f;
57
58    baseCords = Random.Range(3, 7);
59    basePlayTime = new float[baseCords];
60    basePitchRanges = new float[baseCords];
61    for (int i = 0; i < baseCords; i++)



Generating Music

[ 178 ]

62    {
63      basePlayTime[i] = Random.Range(3.0f / baseCords, measure /  
        baseCords);
64      playTotal += basePlayTime[i];
65      basePitchRanges[i] = Random.Range(lowPitchRange,  
        highPitchRange);
66    }
67    basePlayTimer = basePlayTime[0];
68
69    baseInterval = (measure - playTotal) / baseCords;
70    baseIntervalTimer = baseInterval;
71  }
72
73  private void PlaySoundLine(AudioSource audio,
74    float[] playTime,
75    ref float playTimer,
76    float interval,
77    ref float intervalTimer,
78    int cords,
79    float[] pitchRanges,
80    ref int pitchRangeCount)
81    {
82      if (pitchRangeCount >= cords)
83      {
84        pitchRangeCount = 0;
85      }
86
87      if (playTimer > 0)
88      {
89        playTimer -= Time.deltaTime;
90        if (!audio.isPlaying)
91        {
92          audio.pitch = pitchRanges[pitchRangeCount];
93          audio.Play();
94          pitchRangeCount++;
95        }
96      }
97      else if (playTimer <= 0)
98        {
99          audio.Stop();
100
101         if (intervalTimer > 0)
102         {
103           intervalTimer -= Time.deltaTime;



Chapter 8

[ 179 ]

104         }
105         else if (intervalTimer <= 0)
106         {
107           playTimer = playTime[pitchRangeCount];
108           intervalTimer = interval;
109         }
110      }
111   }
112 }

This is a rather large code block, so we will take a look at it in blocks. First, we will 
go over our declarations, then the Awake function, then we'll jump to the Init and 
PlaySoundLine, and finally, return to the Update function. So, in that order, let's go 
over an explanation of the SoundManager code:

•	 Lines 1-4: These are our general using directives that you've seen 
throughout the book.

•	 Lines 8-25: These lines are our variable declarations and there are quite a 
few of them. We'll give a brief explanation of each one. The SoundManager 
instance—the SoundManager class will be a singleton and is set up exactly 
like the GameManager class.

•	 Lines 10-12: Here are our AudioSource references. Each sound will be 
called from an AudioSource that we attached to the Sound Manager prefab. 
We will only be working with the lowSource instance for right now.

•	 Lines 14-15: These are the pitch ranges that our sounds can have. We will 
be dynamically changing these values, so initialize them at 0.

•	 Line 17: This is our measure variable, which will be a single float value 
representing the time frame in which all the sounds are played.

•	 Line 19: The play times for the lowSource instance. We will refer to this  
as the base line sounds because it will make up the tempo/rhythm for the 
other sounds to follow. The basePlayTime is an array because the sound  
will play multiple times in a measure and at differing lengths.

•	 Line 20: basePlayTimer is the play timer. We will need a variable dedicated 
to timing the play length of the current lowSource sound. We will have 
several variables like this.

•	 Line 21: baseInterval is the internal time frame. The interval is the 
amount of time between the sound playing. Remember from the algorithm 
design that we are going to use this value to calculate the other values.

•	 Line 22: baseIntervalTimer is another dedicated timer. This one is for 
timing the interval or wait period between sound plays.



Generating Music

[ 180 ]

•	 Line 23: baseCords is the number of times the sound will play within 
a measure. This number will be the length of the basePlayTimes and 
basePitchRanges arrays.

•	 Line 24: basePitchRanges is the array that holds the pitch range values 
that correlate to the basePlayTimes array.

•	 Line 25: Finally, we'll use pitchRangeCount to keep track of which pitch 
value we need to attach to the sound.

•	 Lines 27-39: After all those variable declarations, we are at the Awake 
function. Here, we will set up the SoundManager class to be a singleton,  
just like we do in the GameManager class. Then, we set our initial values  
for our pitch range and call the Init function, which will calculate our 
sounds within our measure.

•	 Lines 53-71: The Init function is where we will decide the length of our 
measure and calculate how the sound will be played within that measure. 
First, we randomly decide the length of the measure, and then, we declare  
a helper variable that will track how much time in total of the measure is 
spent playing the sound.

•	 Lines 58-60: We randomly decide the number of times we play the sound 
as baseCords. We then use that number to initialize our basePlayTimes and 
basePitchRanges arrays.

•	 Lines 61-66: When calculating the basePlayTimes, we do a little math.  
We are going to let the basePlayTimes array be decided at random, but 
we can't let them be too long or it will mess up our measure timing. So the 
minimum of our range dictates that the sound can play for no less than the 
minimum length of a measure divided by the number of times we want 
to play the sound. Likewise, the sound can play for no longer than the full 
length of our measure divided by the number of sound plays. This will 
restrict the sound to play in intervals that are well contained within the 
measure. Then, we add this calculated play time to the total of playTotal 
and randomize the pitch for that sound to play.

•	 Line 67: We want to initialize the basePlayTimer array to hold the first  
play time.

•	 Lines 69-70: Lastly, we will calculate the baseInterval array to be an even 
distribution of the leftover time that the sound is not playing. The way we do 
this is we subtract the total play time from the total measure time and divide 
it by the number of times the sound is played.



Chapter 8

[ 181 ]

•	 Lines 73-112: Moving on to the PlaySoundLine function, this is where the 
AudioSource method will be called and the play timers will be run. We pass 
into the function all the variables we track for the lowSource sound. Some of 
the variables, mainly the timers, are passed as ref, which means their values 
will be globally updated in the script.

•	 Lines 82-85: This is a check that resets the pitchRangeCount variable.  
The pitchRangeCount variable will increase over time representing which 
pitch is being applied to the sound.

•	 Lines 87-96: This first check is to see if our playTimer is running. If the 
timer hasn't hit zero yet, we want to decrease the time. Then, we check if 
the sound is playing. If not, we play it with the selected pitch and adjust the 
pitchRangeCount for next time. We check to see if the sound is playing we 
can then skip playing the song so that we don't start it from the beginning.

•	 Lines 97-111: If the playTimer variable hits 0, then we stop the sound. 
We will also start the interval wait period. After the intervalTimer 
variable hits 0, we set the playTime value to match the pitchRangeCount 
value, which was adjusted during the playing of the sound. We are using 
pitchRangeCount as the dynamic value and cords as the constant to reset.

•	 Lines 41-51: Lastly, the Update function calls the PlaySoundLine function. 
The Update function is called once per frame, which happens many times 
within a second of the game and is ideal for use of timing.

And after all that, you can add this script to the Sound Manager prefab. You will 
need to add the three Audio Sources in our Sound Manager component to their 
source locations in the SoundManager script. Then, go ahead and play the game.  
You should hear a low bass sound. Try stopping and starting the game several  
times to hear how it changes.

That was quite a bit to get through, but we're not done yet. It's not much of a song  
to only have one sound playing. So, next, we are going to add our two other sounds.  
But we need to be aware of good coding practices.

As of right now, we can easily add the sounds to our script, but it will make for  
some unappealing code. We are tracking a large number of variables for our base 
sound and we would have to add those same variables per new sound. Take a look 
at Code Snip 8.2 to see an example:

1  public float basePlayTime = 0.0f;
2  public float basePlayTimer = 0.0f;
3 public float baseInterval = 0.0f;
4  public float baseIntervalTimer = 0.0f;
5  public int baseCords;



Generating Music

[ 182 ]

6  private float[] basePitchRanges;
7  public int basePitchRangeCount = 0;
8  
9  public float midPlayTime = 0.0f;
10 public float midPlayTimer = 0.0f;
11 public float midInterval = 0.0f;
12 public float midIntervalTimer = 0.0f;
13 public int midCords;
14 private float[] midPitchRanges;
15 public int midPitchRangeCount = 0;
16
17 public float highPlayTime = 0.0f;
18 public float highPlayTimer = 0.0f;
19 public float highInterval = 0.0f;
20 public float highIntervalTimer = 0.0f;
21 public int highCords;
22 private float[] highPitchRanges;
23 public int highPitchRangeCount = 0;
24
25 void Update () {
26   PlaySoundLine (lowSource,
27     basePlayTime,
28     ref basePlayTimer,
29     baseInterval,
30     ref baseIntervalTimer,
31     baseCords,
32     basePitchRanges,
33     ref basePitchRangeCount);
34
35   PlaySoundLine (midSource,
36     midPlayTime,
37     ref midPlayTimer,
38     midInterval,
39     ref midIntervalTimer,
40     midCords,
41     midPitchRanges,
42     ref midPitchRangeCount);
43
44  PlaySoundLine (highSource,
45    highPlayTime,
46    ref highPlayTimer,
47    highInterval,
48    ref highIntervalTimer,
49    highCords,



Chapter 8

[ 183 ]

50    highPitchRanges,
51    ref highPitchRangeCount);
52
53 }

As you can see, we would have to heavily repeat ourselves in the code and it would 
quickly become an unnecessarily large file. Instead, what we can do is make things 
a little more modular. By adding a class that would encapsulate the sound variables, 
the sound calculations, and the playing of the sound, we can make it so that adding 
a new sound would only require a few new lines. This would make our script scale 
better as we could also devise a system to dynamically add sounds.

All that we need to do is declare a class within the Sound Manager, and then copy 
our functionality into that new class. Then, we can slightly rewrite our functions to 
call the class methods instead. Check out Code Snip 8.3 to see how this is done:

1 public class SoundManager : MonoBehaviour {
2 
3  [Serializable]
4  public class AudioCtrl
5  {
6    public float[] pitchRanges;
7    public float[] playTimes;
8    public float playTimer;
9    public float interval;
10   public float intervalTimer;
11   public int cordCount;
12   public int rangeCount;
13   
14   public AudioCtrl () {
15     playTimer = 0.0f;
16     interval = 0.0f;
17     intervalTimer = 0.0f;
18     cordCount = 0;
19     rangeCount = 0;
20   }
21
22   public void CalculateAudio (float measure, int minFreq, int  
     maxFreq, float low, float high) {
23     float playTotal = 0.0f;
24
25     cordCount = Random.Range (minFreq, maxFreq);
26     playTimes = new float[cordCount];
27     pitchRanges = new float[cordCount];



Generating Music

[ 184 ]

28     for (int i = 0; i < cordCount; i++) {
29       playTimes[i] = Random.Range (minFreq/cordCount,  
         measure/cordCount);
30       playTotal += playTimes[i];
31       pitchRanges[i] = Random.Range(low, high);
32     }
33     playTimer = playTimes[0];
34     
35     interval = (measure - playTotal) / cordCount;
36     intervalTimer = interval;
37   }
38
39   public void PlaySoundLine (AudioSource source) {
40    
41     if (rangeCount >= cordCount) {
42       rangeCount = 0;
43     }
44     
45     if (playTimer > 0){
46       playTimer -= Time.deltaTime;
47       if (!source.isPlaying) {
48         source.pitch = pitchRanges[rangeCount];
49         source.Play();
50         rangeCount++;
51       }
52     }
53     else if (playTimer <= 0){
54       source.Stop();
55       
56       if (intervalTimer > 0){
57         intervalTimer -= Time.deltaTime;
58       }
59       else if (intervalTimer <= 0){
60         playTimer = playTimes[rangeCount];
61         intervalTimer = interval;
62       }
63     }
64   }
65 }
66
67  public static SoundManager instance = null;
68
69  public AudioSource highSource;
70  public AudioSource midSource;



Chapter 8

[ 185 ]

71  public AudioSource lowSource;
72           
73  public float lowPitchRange = 0.0f;
74  public float highPitchRange = 0.0f;
75
76  public float measure = 0.0f;
77
78  public AudioCtrl baseAudio;
79  public AudioCtrl midAudio;
80  public AudioCtrl highAudio;
81
82  void Awake () {
83    if (instance == null)
84      instance = this;
85    else if (instance != this)
86      Destroy (gameObject);
87
88    DontDestroyOnLoad (gameObject);
89
90    lowPitchRange = 0.25f;
91    highPitchRange = 1.75f;
92
93    baseAudio = new AudioCtrl();
94    midAudio = new AudioCtrl();
95    highAudio = new AudioCtrl();
96
97    FormAudio();
98  }
99
100 void Update () {
101   baseAudio.PlaySoundLine (lowSource);
102   midAudio.PlaySoundLine (midSource);
103   highAudio.PlaySoundLine (highSource);
104 }
105
106 public void FormAudio () {
107   measure = Random.Range (1.0f, 20.0f);
108
109   baseAudio.CalculateAudio(measure, 3, 7, lowPitchRange,  
      highPitchRange);
110   midAudio.CalculateAudio(measure, 2, 6, lowPitchRange,  
      highPitchRange);
111   highAudio.CalculateAudio(measure, 5, 10, lowPitchRange,  
      highPitchRange);
112
113 }
114 }



Generating Music

[ 186 ]

This is another large code block, but keep in mind that this is more of a code 
rearrangement than an addition of functionality. The main task of this is to 
modularize our sound effects so that we can easily add more sounds. So let's  
take a look at what we've done:

•	 Lines 3-4: Here is the declaration of our new AudioCtrl helper class.  
We are also going to serialize the class so that we can see its properties  
in the Unity Editor.

•	 Lines 6-12: These lines of the AudioCtrl class are the variables we used 
to manage our base sound. We have renamed them slightly because these 
properties are now universal to any AudioCtrl sound.

•	 Lines 14-20: This is the AudioCtrl constructor. It simply initializes all 
single values to 0. The arrays will be initialized later in the class.

•	 Lines 22-36: The CalculateAudio method of the AudioCtrl class will  
use the sound variables and calculate the play times of the sound based  
on the measure. This is the Init function from the last version of code.

•	 Lines 38-63: The PlaySoundLine function is the PlaySoundLine from the 
last version of code as well. We have made some variable name adjustments 
to use the AudioCtrl internal properties.

•	 Lines 67-80: After the AudioCtrl class declaration, we have the regular 
variable declarations for the SoundManager class. The only difference here 
is that instead of declaring a group of variables for each sound source, we 
declare a new AudioCtrl instance.

•	 Lines 81-97: In the Awake function, we initialize the AudioCtrl instances 
and call a new function called FormAudio.

•	 Lines 99-103: Our Update function is still only three function calls, but they 
are much more compact than the variables have been compartmentalized 
more efficiently, adding other sounds.

•	 Lines 105-111: Lastly, our FormAudio function just acts as a driver to call 
CalculateAudio on each of the AudioCtrl instances. The measure length is 
also decided here. The numbers in the function calls represent the min and 
max range of how many times within the measure a sound is played. Feel 
free to change these numbers to create a sound combination that you enjoy.

So, we cleaned up our code and simultaneously added two more sounds to our  
song. Now, you can head back to the Unity Editor and give the new setup a test.  
You might need to reset your Audio Sources in the SoundManager script on the 
Game Object.



Chapter 8

[ 187 ]

Try stopping and starting the game to generate new songs. You might notice that 
sometimes the song has a fast pace or a slow pace. The pace or tempo of the song  
is controlled with the measure range that was set in the FormAudio function.

It would be a fun adjustment to our script if we could manipulate the measure 
during game play and thus change the tempo of the music as we play. Usually,  
you have atmospheric music as you explore in a game and then the music gets  
tenser and the tempo increases when you are in a battle or in a similar situation. 
We are going to add the functionality to change the tempo on our song, depending 
on what we are doing in the game. We can also make an adjustment to increase the 
melodic nature of our song.

Adding tension
This addition will need to take place in the GameManager class as well, but we will 
start in the SoundManager class. First, we will try to add some more melody to our 
song. There is a rise and fall nature to music. The sound will rise in pitch and then 
lower creating a rhythm.

We will add in some pitch control to attempt a similar effect. This change will take 
place in the CalculateAudio function of the SoundManager class. Take a look at  
Code Snip 8.4 to see the changes:

1 public void CalculateAudio (float measure, int minFreq, int  
  maxFreq, float low, float high) {
2   float playTotal = 0.0f;
3   float lastPitch = Random.Range(low, high);
4   int switchPitchCount = Random.Range(3, maxFreq);
5   int switchPitch = 0;
6   int pitchDir = Random.Range(0, 2);
7
8   cordCount = Random.Range (minFreq, maxFreq);
9   playTimes = new float[cordCount];
10  pitchRanges = new float[cordCount];
11  for (int i = 0; i < cordCount; i++) {
12    playTimes[i] = Random.Range (minFreq/cordCount,  
      measure/cordCount);
13    playTotal += playTimes[i];
14    if (pitchDir == 0) {
15      lastPitch = pitchRanges[i] = Random.Range(low, lastPitch);
16    }
17    else if (pitchDir == 1) {
18      lastPitch = pitchRanges[i] = Random.Range(lastPitch,  
        high);



Generating Music

[ 188 ]

19    }
20    switchPitch++;
21    if (switchPitch == switchPitchCount) {
22      if (pitchDir == 0)
23        pitchDir = 1;
24      else
25        pitchDir = 0;
26    }
27  }
28  playTimer = playTimes[0];
29  
30  interval = (measure - playTotal) / cordCount;
31  intervalTimer = interval;
32 }

We added some new local variables that will keep track of the pitch. Then, we added 
some checks that will dictate whether we want to adjust the pitch lower or higher. 
Let's go through the code:

•	 Line 3: lastPitch will be the current pitch value.
•	 Line 4: switchPitchCount will be the number of times the pitch  

value changes.
•	 Line 5: switchPitch will be a flag to indicate that we are switching  

whether a pitch should increase or decrease.
•	 Line 6: pitchDir is the indicator that the pitch is increasing or decreasing.  

1 for increasing and 0 for decreasing.
•	 Lines 14-19: We will calculate the pitch of the sound with the play time 

calculation. First, we check to see in which direction the pitch needs to go.  
If 0, we want the pitch to stay the same or to go lower. If 1, we want the  
pitch to stay the same or to go higher.

•	 Lines 19-26: After we choose a pitch or a sound play, we add to the 
countdown of the pitch's direction change. If it's time to change the pitch's 
direction, then we adjust pitchDir accordingly.

So that quick change should give our music a bit more melody. Use this and adjust 
the frequency values in the PlaySoundLine calls to create a general sound that you 
like. Now, we will move on to adjusting the measure during game play.

Still in the SoundManager class , you'll make a small change. In the FormAudio 
function, you'll add a check for a flag. We can then call FormAudio from the 
GameManager with the flag active or not to change the tempo.



Chapter 8

[ 189 ]

The flag, which we will call tension, will be set when you encounter enemies.  
In FormAudio, we'll simply adjust the range in which the measure can choose from. 
You can see this in Code Snip 8.5:

1 public void FormAudio (bool tension) {
2 
3   if (tension) {
4     measure = Random.Range (1.0f, 3.0f);
5   } else {
6     measure = Random.Range (10.0f, 20.0f);
7   }
8
9   baseAudio.CalculateAudio(measure, 3, 7, lowPitchRange,  
    highPitchRange);
10  midAudio.CalculateAudio(measure, 2, 6, lowPitchRange,  
    highPitchRange);
11  highAudio.CalculateAudio(measure, 5, 10, lowPitchRange,  
    highPitchRange);
12
13 }

Lines 3-7 show the check that is needed. If the tension flag is set, measure will 
choose from a lower range of measure time frames, which will increase the frequency 
of sound plays. This, thus, increases the tempo and the anxiety of the song.

We need to also change how we call the function and where. Starting in the Awake 
function of the SoundManager class, change the FormAudio call to FormAudio(false). 
Then, we'll need to open up the GameManager script to add some FormAudio calls.  
The changes to the GameManager class can be seen in Code Snip 8.6:

14 public void AddEnemyToList(Enemy script)
15 {
16   enemies.Add(script);
17   SoundManager.instance.FormAudio (true);
18 }
19 public void RemoveEnemyFromList(Enemy script)
20 {
21   enemies.Remove(script);
22   if (enemies.Count == 0) {
23    SoundManager.instance.FormAudio (false);
24  }
25 }
...
26 public void exitDungeon () {
27   boardScript.SetWorldBoard ();



Generating Music

[ 190 ]

28   playerScript.dungeonTransition = false;
29   playerInDungeon = false;
30   enemies.Clear ();
31 
32   SoundManager.instance.FormAudio (false);
33 }

The adjustment is minor but will make a good impact on game play. Simply 
add the SoundManager.instance.FormAudio call to the AddEnemyToList, 
RemoveEnemyFromList, and exitDungeon functions. You will need to add a  
check to the RemoveEnemyFromList function that checks whether all enemies  
have been removed.

Now, when you play the game, the tempo of our song will play slower and more 
melodic. Find an enemy and the tempo of the song will increase, which will make  
it feel as though there is some tension. This all adds to the overall fun of the game.

Summary
That completes our chapter building and our PCG Roguelike game. The game is by no 
means done, but it is very much playable. This is a great starter project that you can, 
and should, finish on you own. Every piece of this project was done using the theory 
of PCG, but it all can be improved.

For example, the music in this chapter can easily use more sounds. You can even add 
to the Sound Manager, making it choose 5-10 sounds from a large list of preloaded 
sounds. Use your imagination and continue building with PCG.

You learned some simple music theory. You learned how to approach changing a 
complex subject into an algorithm. And lastly, you took some time and modularized 
your code to make it neater and more reusable. 

Remember, PCG doesn't stop at visual art or music. Be inventive when you  
approach PCG. You can procedurally generate anything. Think about how you  
can procedurally generate story, AI behavior, sounds, user interfaces, animations,  
or anything really!

We are done with our 2D Roguelike game for now, but we have one more subject left 
to discuss. We are going to take a brief view of PCG in 3D space. In the next chapter, 
we will build a planet generator and explore some PCG worlds.



[ 191 ]

Generating a 3D Planet
So far we've tackled 2D content generation and some complex sound generation.  
You made a 2D Roguelike game that can continually generate game content for as 
long as the player can survive. However, with our 2D game complete, it's time to  
add another dimension to our PCG learning and move into 3D.

In this chapter, we will be procedurally generating a 3D planet. You can see an 
example of a procedurally generated shape in the following figure. Then, just for 
fun, we'll add the scripts necessary to take a first person view walk on that planet. 
However, 3D does pose some new considerations when applying PCG. Here's what 
you can expect to learn in this chapter:

•	 2D versus 3D rendering
•	 Space and time complexity of 3D object generation
•	 3D geometry considerations with PCG

A procedurally generated sphere



Generating a 3D Planet

[ 192 ]

Generating 3D objects is basically graphics programming. Math can be used to 
describe everything around us in a geometric sense. Then, we take that math and 
make it an algorithm for drawing points and lines on a graph and rendering it to  
our screen. Graphics programming is a very interesting and spectacular subfield  
of computer science, but be prepared to study lots of advanced mathematics to  
get good at it.

We will be dealing with more math in this chapter than the previous ones. Since 
graphics programming is a vast subject that has many books already written about 
it, the explanations of the mathematics will be brief. These are just equations that 
can be looked up and researched at your leisure. So without further delay, let's start 
learning some PCG in 3D.

Adding a third dimension
Unity makes 2D game development very easy. Don't forget that underneath  
Unity's user interface, there are a lot of calculations being done for us. In many  
other graphics rendering engines, we would have to write the code that creates 
the 2D square that we can then draw our sprite on. With Unity, we simply add 
a component or two. In the following figure, we can see a 2D sprite from a 3D 
perspective. A sprite is after all just a quad that is rendered facing the camera.

The 2D quad a sprite is drawn onto



Chapter 9

[ 193 ]

Unity also makes 3D game development much easier. Instead of using quads for 
sprite rendering, in 3D, we will work from 3D models. A 3D model is a collection 
of vertices, or points, in 3D space. We then connect those dots and make faces or 
triangles. This comprises the wireframe structure and surface of our model.

For most games, a 3D model is created by a 3D modeling program or software 
and then imported into Unity. We will then assign appropriate components to the 
imported model. We can then easily manipulate the 3D models with physics and 
animation. This is convenient because it can be very difficult and time consuming 
trying to program an algorithm to create a complex 3D model.

This is exactly what we are going to do though. We are going to bypass the modeling 
phase and write a script that creates a model for us. We want to do this to introduce 
that random factor. However, as stated before, this can get very time consuming and 
complex. There are a few things that change drastically when applying PCG to 3D as 
opposed to 2D.

3D versus 2D
Because 3D objects can become very complex very quickly, we need to keep two 
things in mind when we write our algorithms: time and space. We need to be aware 
that certain tasks can take a long time because there is a lot for the computer to 
process and some tasks can take a lot of space in terms of memory. In computer 
science, this is the study of time complexity and space complexity.

We need to understand that creating and managing 3D objects can take a long time 
because there are a lot of pieces to a 3D object. We need to calculate the position of 
every point and draw every triangle between those points. This ultimately means 
longer load times and/or some slowing during gameplay.

Space management also becomes a concern when generating 3D objects. The 
more complex an object is, the more memory it will need to use in its calculations. 
Information on every point, triangle, and more needs to be stored somewhere when 
generating 3D objects. The more 3D objects that are being drawn onscreen, the more 
memory will be consumed and possibly slow down the gameplay.

Fortunately, graphics programming is a field that is widely researched and developed. 
There are plenty of references online alone that can aid in generating a wide range of 
3D objects. The 3D primitives (cubes, cylinders, spheres, polygons, and so on) all have 
an equation that has been made into an efficient algorithm already. We just need to 
keep in mind that there are usually several ways to make a shape and some might suit 
our needs better than others.



Generating a 3D Planet

[ 194 ]

Know your geometry
In this chapter, we will be working with spheres. Spheres in particular can  
be represented by quite a few 3D primitives and other polygons. The Unity  
primitive sphere is actually a cube that has had its vertices interpolated and  
edges slightly moved to make more of a curve. You can see the corners of the  
cube in the sphere wireframe:

3D cube made into a sphere

Working with the Unity primitive sphere
There aren't too many uses for the Unity 3D primitive shapes. Their primary use will 
be in prototypes as a placeholder. Usually, anything that is used in a game has been 
designed and modeled to a specification. With that said, we are going to start with a 
Unity primitive just to see how it works and why we might want to use something 
else instead.

The Unity primitive sphere has a certain property that makes it a little difficult to 
manipulate. The triangles that make up the sphere are all distinct and separate. Each 
triangle has its own vertices and where triangles meet, there is a cluster of separate 
vertices. When we start moving theses vertices, we will split the seams of the model 
and open it up. Usually, meshes only render on one side of a 3D model. So meshes 
that open up will appear transparent at the back of the triangles. The effect can be 
seen in the following figure:



Chapter 9

[ 195 ]

Sphere triangles splitting when moved

To solve this, we will have to add some extra functionality to group the vertices. 
So, when one vertex moves, all of the vertices in the same position will move to the 
same new location. Let's try out writing a script to randomize the vertices while not 
distorting the mesh so much that it renders improperly.

Be sure to set up a new project with a fresh scene in 3D mode. Create a new C# script 
called MoveVertices and open it up for editing. Code Snip 9.1 shows the script:

1 using UnityEngine;
2 using System;
3 using System.Collections.Generic;
4 using Random = UnityEngine.Random;
5
6 public class MoveVertices : MonoBehaviour {
7 
8    Mesh mesh;
9    Vector3[] vertices;
10
11    void Start () {
12        mesh = GetComponent<MeshFilter>().mesh;
13        vertices = mesh.vertices;
14
15        mesh.vertices = Randomize(vertices);
16    }
17
18    Vector3[] Randomize(Vector3[] verts) {
19        Dictionary<Vector3, List<int>> dictionary = new  
          Dictionary<Vector3, List<int>>();



Generating a 3D Planet

[ 196 ]

20
21        for (int x = 0; x < verts.Length; x++) {
22            if (!dictionary.ContainsKey(verts[x])) {
23                dictionary.Add(verts[x], new List<int>());
24            }
25
26            dictionary[verts[x]].Add(x);
27        }
28
29        foreach (KeyValuePair<Vector3, List<int>> pair in  
          dictionary) {
30          Vector3 newPos = pair.Key * Random.Range(0.9f, 1.1f);
31            foreach (int i in pair.Value) {
32                verts[i] = newPos;
33            }
34        }
35
36        return verts;
37    }
38 }

After writing the script, you can make a sphere primitive in the editor by navigating  
to GameObject | 3D Object | Sphere from the menu. You can then attach this script 
to the object and run it to see its effects. The randomization of the vertices makes a sort 
of bumpiness or terrain on the sphere. Now, let's see what is happening in the code:

•	 Lines 1-4: These are our general using statements. We use Generic for  
the dictionary class and set Random to Unity.Random.

•	 Lines 8-9: We will be working with two members, the sphere's Mesh 
component and the set of vertices that make up that mesh.

•	 Lines 11-16: In the Start function, we will set a reference to the Mesh 
component, grab the array of vertices from that mesh, and call the  
Randomize function.

•	 Lines 18-19: The Randomize function takes an array of Vector3 objects.  
We are going to set up a dictionary to store the location of a vertex as a key 
and map that to a list of vertices that share the same location.

•	 Lines 21-27: We want to loop through all the vertices and add their location 
to our dictionary. If the vertex location hasn't been added yet, then we add it; 
if it has, then we add that vertex to the list of vertices at that location.



Chapter 9

[ 197 ]

•	 Lines 29-34: Once we have our dictionary of grouped vertices, we will loop 
through each vertex position. For each vertex position, we want to choose a 
new random location, loop through every vertex in the current location, and 
change it to the new location.

Now, our sphere has a bumpy structure to it. You can vary the size of the sphere and 
the randomization range for different results. Try experimenting with this script and 
see what you come up with.

The main issue with using the Unity primitive is that you don't get to choose the 
natural size and how many vertices you want in the mesh. So the better option is  
to generate our own sphere. However, we have to be aware that this might slow 
down our system. As with our MoveVertices script, we looped through a large  
set of vertices several times. The number of vertices and loop passes all add up 
against performance.

Generating a sphere
As stated before, generating a sphere entails plotting points based on an equation. 
The equation is geometry-based and made into an algorithm to plot the vertices. 
Teaching the bases of graphics programming would be a book in itself. Thus, the 
explanation of the math will be brief.

There happens to be quite a few ways to make a sphere. We can take a simple 3D 
shape and interpolate or multiply the vertices in a structured fashion, smoothing as 
we go. There are a lot of algorithms available online and each might make slightly 
different kinds of spheres.

The algorithm we are going to use can be found at the Unity Wiki page,  
http://wiki.unity3d.com/index.php/ProceduralPrimitives. There are also 
other 3D primitives on this page that you can generate. The sphere we are going to 
generate is a polar sphere, which is the common sphere that is generated. So, now 
create a new C# script called ProceduralSphere.cs and open it up for editing.  
Code Snip 9.2 shows the script:

1 using UnityEngine;
2 using System.Collections;
3 using System.Collections.Generic;
4 using Random = UnityEngine.Random;
5 
6 public class ProceduralSphere : MonoBehaviour {
7 
8    private Mesh mesh;
9    private MeshFilter filter;

http://wiki.unity3d.com/index.php/ProceduralPrimitives


Generating a 3D Planet

[ 198 ]

10
11    void Start () {
12        GenerateSphere(0.5f, 16, 16);
13    }
14
15    private void GenerateSphere (float radius, int nbLong, int  
      nbLat) {
16        filter = gameObject.AddComponent<MeshFilter>();
17        mesh = filter.mesh;
18        mesh.Clear();
19
20        #region Vertices
21        Vector3[] vertices = new Vector3[(nbLong + 1) * nbLat +  
          2];
22        float _pi = Mathf.PI;
23        float _2pi = _pi * 2f;
24
25        vertices[0] = Vector3.up * radius;
26        for (int lat = 0; lat < nbLat; lat++)
27        {
28            float a1 = _pi * (float)(lat + 1) / (nbLat + 1);
29            float sin1 = Mathf.Sin(a1);
30            float cos1 = Mathf.Cos(a1);
31
32            for (int lon = 0; lon <= nbLong; lon++)
33            {
34                float a2 = _2pi * (float)(lon == nbLong ? 0 :  
                  lon) / nbLong;
35                float sin2 = Mathf.Sin(a2);
36                float cos2 = Mathf.Cos(a2);
37
38                vertices[lon + lat * (nbLong + 1) + 1] = new  
                  Vector3(sin1 * cos2, cos1, sin1 * sin2) *  
                  radius;
39            }
40        }
41        vertices[vertices.Length - 1] = Vector3.up * -radius;
42        #endregion
43
44        #region Normals
45        Vector3[] normales = new Vector3[vertices.Length];
46        for (int n = 0; n < vertices.Length; n++)
47            normales[n] = vertices[n].normalized;
48        #endregion
49



Chapter 9

[ 199 ]

50        #region UVs
51        Vector2[] uvs = new Vector2[vertices.Length];
52        uvs[0] = Vector2.up;
53        uvs[uvs.Length - 1] = Vector2.zero;
54        for (int lat = 0; lat < nbLat; lat++)
55            for (int lon = 0; lon <= nbLong; lon++)
56                uvs[lon + lat * (nbLong + 1) + 1] = new  
                  Vector2((float)lon / nbLong, 1f - (float)(lat +  
                  1) / (nbLat + 1));
57        #endregion
58
59        #region Triangles
60        int nbFaces = vertices.Length;
61        int nbTriangles = nbFaces * 2;
62        int nbIndexes = nbTriangles * 3;
63        int[] triangles = new int[nbIndexes];
64
65        //Top Cap
66        int i = 0;
67        for (int lon = 0; lon < nbLong; lon++)
68        {
69            triangles[i++] = lon + 2;
70            triangles[i++] = lon + 1;
71            triangles[i++] = 0;
72        }
73
74        //Middle
75        for (int lat = 0; lat < nbLat - 1; lat++)
76        {
77            for (int lon = 0; lon < nbLong; lon++)
78            {
79                int current = lon + lat * (nbLong + 1) + 1;
80                int next = current + nbLong + 1;
81
82                triangles[i++] = current;
83                triangles[i++] = current + 1;
84                triangles[i++] = next + 1;
85
86                triangles[i++] = current;
87                triangles[i++] = next + 1;
88                triangles[i++] = next;
89            }
90        }
91



Generating a 3D Planet

[ 200 ]

92        //Bottom Cap
93        for (int lon = 0; lon < nbLong; lon++)
94        {
95            triangles[i++] = vertices.Length - 1;
96            triangles[i++] = vertices.Length - (lon + 2) - 1;
97            triangles[i++] = vertices.Length - (lon + 1) - 1;
98        }
99        #endregion
100
101        mesh.vertices = vertices;
102        mesh.normals = normales;
103        mesh.uv = uvs;
104        mesh.triangles = triangles;
105
106        mesh.RecalculateBounds();
107        mesh.Optimize();
108    }
109 }

As you can see, there is a lot that goes into generating a seemingly simple sphere. 
Luckily, we didn't have to write this algorithm from scratch. Primitive shapes  
are pretty well defined and can usually be found documented somewhere else.  
For more complex meshes, though, you will need to engineer them yourself.

In the beginning of Code Snip 9.2, we set Mesh and Mesh Filter. The Mesh object is 
what gets rendered, but we use Mesh Filter for general mesh manipulation. In the 
Start function, we make a call to our GenerateSphere function passing in a radius 
and latitude and longitude lines:

•	 Lines 15-18: In the GenerateSphere function, we add the MeshFilter 
component and clear the new MeshFilter to make sure it is ready to go.

•	 Lines 20-42: This script is broken up into regions so that it is a little more 
readable. In the Vertices region, we plot the points that we will then create 
triangles out of. The algorithm creates an array of Vector3 positions that 
represent the vertices. The vertices are calculated on a curved grid using 
the longitude and latitude lines. The curvature is calculated using sine and 
cosine, which are trigonometric functions for calculating angles.

•	 Lines 44-48: In the Normals region, we calculate the normal of each vertex. 
There is a Unity built-in function for this, called normalized. The normal of  
a vertex is the direction the vertex is facing.



Chapter 9

[ 201 ]

•	 Lines 50-57: The UVs region sets the mapping for texture wrapping. 
Textures use a set of coordinates to wrap the texture around a 3D object.

•	 Lines 59-99: The Triangles region creates the list of triangles that the 
object will render. The triangles will be the face of our object. Each triangle  
is rendered with the given material using its set of three vertex positions. 
This algorithm creates a triangle in three parts: top, middle, and bottom.

•	 Lines 101-104: At the end of the calculations, we assign the pieces from 
Mesh Filter to Mesh.

•	 Lines 106-107: Lastly, we call two Mesh methods to finish our generated 
sphere. RecalculateBounds will make sure the volume of the new mesh 
is correctly calculated and optimize will attempt to make the object render 
faster to the screen. You'll need to add a Mesh Renderer and a component to 
the Material on the object. Also, be sure the object is in view of the camera if 
you don't see anything appear. You can also inspect the sphere in the Scene 
view while in the play mode. Now, if you create an empty GameObject, add 
this script and play the scene. You should see a sphere:

Procedurally generated sphere



Generating a 3D Planet

[ 202 ]

Adding randomization
Now we are going to add the same randomization to this sphere as we did the  
Unity primitive sphere. We just need to add our Randomize function at the end  
of the ProceduralSphere.cs script. Code Snip 9.3 shows what that looks like:

1  private void GenerateSphere (float radius, int nbLong, int  
   nbLat) {
2        
...
3 
4        mesh.vertices = vertices;
5        mesh.normals = normales;
6        mesh.uv = uvs;
7        mesh.triangles = triangles;
8
9        mesh.RecalculateBounds();
10       mesh.Optimize();
11
12       mesh.vertices = Randomize(vertices);
13    }
14
15    private Vector3[] Randomize(Vector3[] verts) {
16        Dictionary<Vector3, List<int>> dictionary = new  
          Dictionary<Vector3, List<int>>();
17
18        for (int x = 0; x < verts.Length; x++) {
19
20            if (!dictionary.ContainsKey(verts[x])) {
21                dictionary.Add(verts[x], new List<int>());
22            }
23            dictionary[verts[x]].Add(x);
24        }
25
26        foreach (KeyValuePair<Vector3, List<int>> pair in  
          dictionary) {
27            Vector3 newPos = pair.Key * Random.Range(0.9f,  
              1.1f);
28            foreach (int i in pair.Value) {
29
30                verts[i] = newPos;
31            }
32        }
33        
34        return verts;
35    }



Chapter 9

[ 203 ]

The update to the ProceduralSphere script simply adds the Randomize function to 
the end of the file and calls it at the end of the GenerateSphere function. This will 
have a very similar effect on its looks as the Unity primitive sphere. However, since 
we are procedurally generating the sphere, we are always one bad function call away 
from straining our system.

Bad time and space complexities
Imagine if we needed to perform a task on each vertex after we moved only one.  
This would cause us to loop over the whole set of vertices multiple times. This  
would be more costly in time than even just generating a more complex sphere.  
The performance of our game is ultimately hurt with scripts like this.

As a demonstration of a bad time complexity, we will update our code slightly to 
simulate having to perform extra tasks on each vertex move.

Save your scene and project before running this script, 
as it might crash Unity!

Code Snip 9.4 shows the update for the demo:

1    void Start () {
2        GenerateSphere(1f, 10, 10);
3    }
4
...
5    
6     private Vector3[] Randomize(Vector3[] verts) {
7        Dictionary<Vector3, List<int>> dictionary = new  
         Dictionary<Vector3, List<int>>();
8
9        for (int x = 0; x < verts.Length; x++) {
10
11            if (!dictionary.ContainsKey(verts[x])) {
12                dictionary.Add(verts[x], new List<int>());
13            }
14            dictionary[verts[x]].Add(x);
15        }
16
17        foreach (KeyValuePair<Vector3, List<int>> pair in  
          dictionary) {
18            Vector3 newPos = pair.Key * Random.Range(0.9f,  
              1.1f);



Generating a 3D Planet

[ 204 ]

19            foreach (int i in pair.Value) {
20
21                verts[i] = newPos;
22                for (int j = 0; j < mesh.vertexCount; j++) {
23                    Debug.Log("loading...");
24                }
25            }
26        }
27        
28        return verts;
29    }

We are going to lessen the number of longitude and latitude sections in the sphere  
as this script is very heavy in processing. Then, we will add lines 22-24. This is a 
loop through the set of vertices that make up the sphere. We make a Debug.Log call 
as some work to perform.

If you run this, you should notice your computer take 30 seconds to 1 minute 
processing before rendering the sphere to your screen. If you don't notice any time 
delay, then you have a very good computer. You can increase the longitude and 
latitude lines but do this in increments of 1.

The Debug.Log call actually takes quite a bit of time to complete as there is more 
work involved than you might think. This example is thus an exaggeration but 
should still be considered. We have exponentially increased the amount of time 
it will take to render the sphere because of our extra loop. Be aware of this time 
complexity moving forward.

This sort of thing can happen with space as well. When we say space, we mean the 
memory your computer can store at a time. To see an example of bad space complexity, 
we simply need to increase the sphere complexity to an unmanageable level.

Start by removing the loop from Code Snip 9.4 on lines 22-24. Then, increase the 
longitude and latitude arguments in the GenerateSphere call on line 2 to over 300. 
If you run this updated code, you will get an error saying you have exceeded the 
maximum number of vertices.

These are good things to be aware of when working with 3D. As you can see, you 
can easily add some code that will either slow your system tremendously or break it 
outright. Good programmers always consider time and space complexities to keep 
performance as high as possible.



Chapter 9

[ 205 ]

Multi mesh planet
Now that we are able to generate a sphere and understand some of the pitfalls  
of 3D rendering, we are ready to generate our planet. Normally, the approach for 
generating a planet would be to generate a sphere and then generate a random 
texture called a height map. This is well covered and documented in free online 
resources. This would require quite a bit of work and extra plugins so it will be  
left to you to research on your own. We will take another approach that can be 
scripted easily.

We will generate multiple spheres and perform some manipulations on their 
geometry to give them each a unique character. We are also going to use a different 
type of sphere for this task. This sphere will be generated from a polygon called an 
Icosahedron. The algorithm for this primitive can be found at the Unity Wiki page, 
http://wiki.unity3d.com/index.php/ProceduralPrimitives.

Icosahedron sphere on the left and polar sphere on the right

The icosahedron sphere is seamlessly created, meaning that there are fewer 
vertices and we can get rid of the vertex grouping functionality. This helps improve 
performance overall. We can do this with the polar sphere but the icosphere has a more 
uniform shape that will work better for the following example. The code to generate 
the icosahedron sphere is found at the same Unity Wiki page as the polar sphere.

We are going to write a single script that we can use and manipulate properties to 
create the terrain, water, and sky of our generated planet. Before we begin writing  
the script, we need to create some materials so that we can tell our spheres apart. 
Create a Materials folder in your Assets folder.

http://wiki.unity3d.com/index.php/ProceduralPrimitives


Generating a 3D Planet

[ 206 ]

In the Materials folder, create a new Material. You can name this material Land. 
Then, you can follow the given steps:

1.	 Set Shader to Standard.
2.	 Set Rendering Mode to Opaque.
3.	 Set Smoothness to 0.

This will give us a nice flat land material. Next, we can make the water. Create a new 
material with the color blue and these properties:

1.	 Set Shader to Standard.
2.	 Set Rendering Mode to Transparent.
3.	 Set Smoothness to 0.7.

Lastly, we will make a sky material with a light blue color and the following properties:

1.	 Set Shader to Standard.
2.	 Set Rendering Mode to Transparent.
3.	 Set Smoothness to 0.2.

Now, in the editor, create four new empty GameObjects and call them Land1, Land2, 
Water, and Sky respectively. Make sure that they share the exact same XYZ position. 
Add a Mesh Renderer component to each object. Add a Mesh Collider component 
to Land1 and Land2. And add the materials to the appropriate GameObjects.

Now we are ready to write the new script. Create a new script called 
ProceduralPlanet.cs. Then, open up the script for editing. Code Snip 9.5  
shows the new script in its entirety:

1 using UnityEngine;
2 using System.Collections;
3 using System.Collections.Generic;
4 using Random = UnityEngine.Random;
5 
6 public class ProceduralPlanet : MonoBehaviour {
7 
8     private struct TriangleIndices {
9         public int v1;
10        public int v2;
11        public int v3;
12
13        public TriangleIndices(int v1, int v2, int v3) {



Chapter 9

[ 207 ]

14            this.v1 = v1;
15            this.v2 = v2;
16            this.v3 = v3;
17        }
18    }
19
20    private Mesh mesh;
21
22    public bool randomize;
23    public bool offset;
24    public bool invert;
25    public float rad;
26    public int detail;
27    public MeshCollider meshCollider;
28
29    // Use this for initialization
30    void Start () {
31        Create(rad, detail);
32
33        if (offset) {
34            Offset();
35        }
36
37        if (meshCollider) {
38            meshCollider.sharedMesh = mesh;
39        }
40        
41 }
42
43 private void Offset () {
44        int offset = Random.Range(1, 7);
45
46        int offsetMod = Random.Range(0, 2);
47        if (offsetMod == 0) {
48            offsetMod = -1;
49        }
50
51        Vector3 offsetVec = new Vector3();
52        switch (offset) {
53            case 1:
54                offsetVec = new Vector3(Random.Range(0.01f,  
                  0.05f), 0, 0) * offsetMod;
55                break;
56            case 2:



Generating a 3D Planet

[ 208 ]

57                offsetVec = new Vector3(0, Random.Range(0.01f,  
                  0.05f), 0) * offsetMod;
58                break;
59            case 3:
60                offsetVec = new Vector3(0, 0,  
                  Random.Range(0.01f, 0.05f)) * offsetMod;
61                break;
62        }
63        transform.position = transform.position += offsetVec;
64    }
65
66    // return index of point in the middle of p1 and p2
67    private int getMiddlePoint(int p1, int p2, ref List<Vector3>  
      vertices, ref Dictionary<long, int> cache, float radius) {
68        // first check if we have it already
69        bool firstIsSmaller = p1 < p2;
70        long smallerIndex = firstIsSmaller ? p1 : p2;
71        long greaterIndex = firstIsSmaller ? p2 : p1;
72        long key = (smallerIndex << 32) + greaterIndex;
73
74        int ret;
75        if (cache.TryGetValue(key, out ret)) {
76            return ret;
77        }
78
79        // not in cache, calculate it
80        Vector3 point1 = vertices[p1];
81        Vector3 point2 = vertices[p2];
82        Vector3 middle = new Vector3
83        (
84            (point1.x + point2.x) / 2f,
85            (point1.y + point2.y) / 2f,
86            (point1.z + point2.z) / 2f
87        );
88
89        // add vertex makes sure point is on unit sphere
90        int i = vertices.Count;
91        vertices.Add(middle.normalized * radius);
92
93        // store it, return index
94        cache.Add(key, i);
95
96        return i;
97    }



Chapter 9

[ 209 ]

98
99    public void Create(float radius, int recursionLevel) {
100        MeshFilter filter =  
           gameObject.AddComponent<MeshFilter>();
101        mesh = filter.mesh;
102        mesh.Clear();
103
104        List<Vector3> vertList = new List<Vector3>();
105        Dictionary<long, int> middlePointIndexCache = new  
           Dictionary<long, int>();
106
107        // create 12 vertices of a icosahedron
108        float t = (1f + Mathf.Sqrt(5f)) / 2f;
109
110        vertList.Add(new Vector3(-1f, t, 0f).normalized *  
           radius);
111        vertList.Add(new Vector3(1f, t, 0f).normalized *  
           radius);
112        vertList.Add(new Vector3(-1f, -t, 0f).normalized *  
           radius);
113        vertList.Add(new Vector3(1f, -t, 0f).normalized *  
           radius);
114
115        vertList.Add(new Vector3(0f, -1f, t).normalized *  
           radius);
116        vertList.Add(new Vector3(0f, 1f, t).normalized *  
           radius);
117        vertList.Add(new Vector3(0f, -1f, -t).normalized *  
           radius);
118        vertList.Add(new Vector3(0f, 1f, -t).normalized *  
           radius);
119
120        vertList.Add(new Vector3(t, 0f, -1f).normalized *  
           radius);
121        vertList.Add(new Vector3(t, 0f, 1f).normalized *  
           radius);
122        vertList.Add(new Vector3(-t, 0f, -1f).normalized *  
           radius);
123        vertList.Add(new Vector3(-t, 0f, 1f).normalized *  
           radius);
124
125
126        // create 20 triangles of the icosahedron
127        List<TriangleIndices> faces = new  
           List<TriangleIndices>();



Generating a 3D Planet

[ 210 ]

128
129        // 5 faces around point 0
130        faces.Add(new TriangleIndices(0, 11, 5));
131        faces.Add(new TriangleIndices(0, 5, 1));
132        faces.Add(new TriangleIndices(0, 1, 7));
133        faces.Add(new TriangleIndices(0, 7, 10));
134        faces.Add(new TriangleIndices(0, 10, 11));
135
136        // 5 adjacent faces 
137        faces.Add(new TriangleIndices(1, 5, 9));
138        faces.Add(new TriangleIndices(5, 11, 4));
139        faces.Add(new TriangleIndices(11, 10, 2));
140        faces.Add(new TriangleIndices(10, 7, 6));
141        faces.Add(new TriangleIndices(7, 1, 8));
142
143        // 5 faces around point 3
144        faces.Add(new TriangleIndices(3, 9, 4));
145        faces.Add(new TriangleIndices(3, 4, 2));
146        faces.Add(new TriangleIndices(3, 2, 6));
147        faces.Add(new TriangleIndices(3, 6, 8));
148        faces.Add(new TriangleIndices(3, 8, 9));
149
150        // 5 adjacent faces 
151        faces.Add(new TriangleIndices(4, 9, 5));
152        faces.Add(new TriangleIndices(2, 4, 11));
153        faces.Add(new TriangleIndices(6, 2, 10));
154        faces.Add(new TriangleIndices(8, 6, 7));
155        faces.Add(new TriangleIndices(9, 8, 1));
156
157
158        // refine triangles
159        for (int i = 0; i < recursionLevel; i++) {
160            List<TriangleIndices> faces2 = new  
               List<TriangleIndices>();
161            foreach (var tri in faces) {
162                // replace triangle by 4 triangles
163                int a = getMiddlePoint(tri.v1, tri.v2, ref  
                   vertList, ref middlePointIndexCache, radius);
164                int b = getMiddlePoint(tri.v2, tri.v3, ref  
                   vertList, ref middlePointIndexCache, radius);
165                int c = getMiddlePoint(tri.v3, tri.v1, ref  
                   vertList, ref middlePointIndexCache, radius);
166
167                faces2.Add(new TriangleIndices(tri.v1, a, c));



Chapter 9

[ 211 ]

168                faces2.Add(new TriangleIndices(tri.v2, b, a));
169                faces2.Add(new TriangleIndices(tri.v3, c, b));
170                faces2.Add(new TriangleIndices(a, b, c));
171            }
172            faces = faces2;
173        }
174
175        mesh.vertices = vertList.ToArray();
176
177        List<int> triList = new List<int>();
178        for (int i = 0; i < faces.Count; i++) {
179            triList.Add(faces[i].v1);
180            triList.Add(faces[i].v2);
181            triList.Add(faces[i].v3);
182        }
183
184        mesh.triangles = triList.ToArray();
185        mesh.uv = new Vector2[mesh.vertices.Length];
186
187        Vector3[] normales = new Vector3[vertList.Count];
188        for (int i = 0; i < normales.Length; i++)
189            normales[i] = vertList[i].normalized;
190
191
192        mesh.normals = normales;
193
194        if (invert) {
195            // Reverse the triangles
196            int[] triangles = mesh.triangles;
197            for (int i = 0; i < triangles.Length; i += 3) {
198                int j = triangles[i];
199                triangles[i] = triangles[i + 2];
200                triangles[i + 2] = j;
201            }
202            mesh.triangles = triangles;
203
204            // Reverse the normals;
205            Vector3[] normals = mesh.normals;
206            for (int i = 0; i < normals.Length; i++)
207                normals[i] = -normals[i];
208            mesh.normals = normals;
209        }
210



Generating a 3D Planet

[ 212 ]

211        mesh.RecalculateBounds();
212        mesh.Optimize();
213
214        if (randomize)
215            mesh.vertices = Randomize(mesh.vertices);
216    }
217
218    Vector3[] Randomize(Vector3[] verts) {
219
220        for (int x = 0; x < verts.Length; x++) {
221            Vector3 newPos = verts[x] * Random.Range(0.95f,  
               1.03f);
222            verts[x] = newPos;
223        }
224
225            return verts;
226    }
227 }

Most of this script is the algorithm for generating the icosahedron sphere. Then,  
at the end is our Randomize function but without the vertex grouping functionality. 
Despite the size of the script, it only requires a brief explanation of its components. 
It is left to you to research and understand the mathematics behind geometrically 
constructing an icosahedron. Let's take a quick look at Code snip 9.5:

•	 Lines 8-18: The struct TriangleIndices is used as a helper class to store 
information on the triangles of the icosahedron.

•	 Lines 20-27: Here, we set a reference to the Mesh and set some public 
variables that will be used to determine the properties of the spheres:

°° bool randomize will be set if we wish to randomize the location  
of the vertices to create a terrain.

°° bool offset will be set if we want to offset the sphere slightly so 
that they aren't perfectly aligned. We will do this with the land to 
make one or more sides of the planet terrain heavy.

°° bool invert will invert the triangles so the material is drawn on  
the inside of the sphere. This will be used for the sky.

°° float rad is the radius of the sphere.
°° int detail is how many triangles we want to generate in the 

sphere. This is a multiplier, not a value.
°° MeshCollider meshCollider will determine if characters can walk 

on the mesh or not.



Chapter 9

[ 213 ]

•	 Lines 43-64: The Offset function will run if offset is set to true. This 
function will randomly choose a number that corresponds to a direction in 
which the sphere will be offset, either -X, X, -Y, Y, -Z, or Z. Then, the sphere 
is offset in that direction by a small random amount. This will make the land 
appear through the water more on one side than the other.

•	 Lines 67-97: GetMiddlePoint is a helper function to the Create function. 
It is used as an interpolation method. This function will return the point at 
which an edge can be split into two separate edges.

•	 Lines 99-216: The Create method runs the icosahedron generation and 
interpolation into a sphere.

•	 Lines 218-226: Last is our Randomize function without the vertex grouping, 
which is a much faster solution given the appropriate amount of memory

Now, we can add this script to each of our empty GameObjects, Land1, Land2, 
Water, and Sky. Each one will have a different use of the public properties. So, after 
you add the script to each object, set these property values.

For Land1 and Land2, set the following values:

•	 Check Randomize
•	 Check Offset
•	 Set Rad to 5
•	 Set Detail to 2
•	 Add the Mesh Collider component to the Mesh Collider field

For Water, set the following:

•	 Set Rad to 4.92
•	 Set Detail to 5

For Sky, set the following:

•	 Check Invert
•	 Set Rad to 6.5
•	 Set Detail to 5



Generating a 3D Planet

[ 214 ]

Make sure that the empty objects are in view of the camera and give it a play.  
You should see your very own procedurally generated planet. You can experiment 
with the properties or add more objects to see what happens.

Procedurally generated planet

Exploring the planet
Now that we have generated a planet, it would be awesome if we could explore the 
surface of it. As a fun bonus, we will add a first-person-view controller, so we can 
explore our planets. Fortunately for us, someone has already tackled the problem  
of spherical gravity in Unity, so all we will have to do is plug and play.

You can get the script for this section either from the example files or from its source 
at https://github.com/SebLague/Spherical-Gravity by SebLague. There is  
also a video at that location where you can see how the scripts work. The scripts  
that are included are the FirstPersonController.cs, GravityAttractor.cs,  
and GravityBody.cs.

You are welcome to view the video to get an explanation on the code in these scripts. 
We are just going to plug them in and use them as they are, though. You'll want to 
add the GravityAttractor script to the Water object. Set a tag for the Water sphere 
to Planet. Then, create a capsule for our first person controller by navigating to 
GameObject | 3D Object | Capsule from the top menu and naming it Player.

https://github.com/SebLague/Spherical-Gravity


Chapter 9

[ 215 ]

Place the main camera as a child of the Player object. You'll want to have the camera 
project from the upper portion of the capsule, where eyes might be. For this example, 
scaling the player to 0.055 worked well. Also, set the main camera's Field of View to 
32 and the Clipping Planes to Near: 0.01 and Far: 7.54. This should work well for 
the size of the sphere we are using.

The first-person camera placement

Add the GravityBody and FirstPersonController to the player. For the 
FirstPersonController, setting the Mouse Sensitivity X & Y to 1 and the Walk 
Speed to 0.5 worked well. Be sure to place the player outside the generated radius 
of the planet; otherwise, it won't read the collider meshes correctly. Then, play the 
scene and explore your planet.

The first-person view of the planet



Generating a 3D Planet

[ 216 ]

You'll be able to see through the sky as it is transparent. You can also slightly see 
through the water areas. There is no collider on the water mesh so you can walk 
through those areas. In some cases, you will go under the water mesh, and since  
the material doesn't render on the back side of the mesh, it will appear as though  
it isn't there.

Summary
This completes our exploration into the 3D realm of PCG. There is a lot more 
to do and explore here but most of it requires a strong foundation in graphics 
programming and mathematics. Try experimenting with the techniques that you 
have learned in this book to generate 3D objects and possibly randomizing them  
in some way.

A good start to your self-learning would be to procedurally change the colors of your 
planet. See if you can write a script that will randomize the colors on the materials 
of the planet as we did in Chapter 5, Randomized Items. You can also refine the land 
creation process and make modular continents as well.

In this chapter, we discussed the changes from 2D versus 3D rendering. You learned 
about the importance of space and time complexity. You learned that there is usually 
more than one way to make a 3D object. Lastly, you learned that PCG with 3D 
requires quite a bit of highly specific mathematics.

You learned all about PCG both in 2D and 3D. We have completed all of the 
programming that this book has to offer. The next chapter isn't so much about  
coding PCG as it is discussing the future of PCG and where it plans to take us.



[ 217 ]

Generating the Future
Throughout the book you've learned a lot about the concept of PCG and its different 
forms. You have also had the chance to experience PCG, first hand, by designing and 
implementing PCG algorithms. You built the core game play of a 2D Roguelike game 
that can generate content forever. You also implemented a 3D planet generator that 
not only looked good from afar, but we were also able to explore it in first person.

PCG doesn't end there though. There are still a lot of topics that we didn't cover such 
as generating textures and story lines or allowing the player to generate content. 
There is a lot that can be done and has yet to be done in the world of PCG for games.

In this chapter, we will go over the main categories of game content and discuss how 
these, sometimes very different, areas can be procedurally generated. This chapter 
will give you a basic idea of how to approach your further PCG learning. It's likely 
that following is a category of content that you didn't even think about procedurally 
generating. And, hopefully, this chapter will help inspire you to try new PCG 
techniques in game development.

Here are the categories that we will cover in this chapter:

•	 Models
•	 Items
•	 Levels
•	 Textures
•	 Terrain
•	 Physics
•	 Animations
•	 AI
•	 Story
•	 Player sandbox



Generating the Future

[ 218 ]

PCG has been around since the beginning of game development. This is because 
video games were created by programmers. Everything had to be procedurally 
generated in the very beginning. In the early days of computing, the same modern 
resources were not available. Early computers lacked the memory to store game 
models for characters and levels, and performance was too limited to display 
complex graphics. PCG has been around since the beginning, but it has a brighter 
future now than ever before due to our advances in technology.

Models
3D models, as you saw in Chapter 9, Generating a 3D Planet, can be extraordinarily 
complicated. It is natural we created programs that allow designers to sculpt in a 
digital 3D space as opposed to trying to create an algorithm that would generate 
these 3D models. A simple sphere can take thousands of lines of code to create alone.

Allowing a person to sculpt and see the creation of the model as it is being created 
allows for an unparalleled level of detail. It would simply take too long to try 
and procedurally generate every 3D model in a game. So, we generally stick to 
procedurally manipulating models.

The trade-off then is to make small pieces of a model that can be widely used and 
then having those procedurally constructed into a whole model at runtime. The 
effect is that we create a game world that is unique to that playthrough. It could  
be possible that the game world morphs every time the player starts a new game  
or just that this game world is unique to another player's game world.

Left: simple model made from modules; Right: more complex model with same modules



Chapter 10

[ 219 ]

The method of modularizing game models has its pros and cons. Designers will 
design smaller pieces but might have to do just as much work, if not more, to create 
enough modules to fill a game. The developer also has the extra task of placing these 
modules correctly in the game so that they make sense to the player. The outcome of 
this is that we can have unique environments for each player and we don't have to 
program the exact geometry of every single model. If we generate a level layout, we 
can then swap in the model modules at random fairly easily.

We can also apply the method of modularization to all of our 3D models including 
items and characters. Character generation is even simpler as most characters in a game 
will have a similar form. If you put the character together with modules, then you can 
swap them out as well. If we choose, we can take this to smaller layers of detail.

Character building modules with modules



Generating the Future

[ 220 ]

The final piece here is that modules can have parameters of differentiation to 
easily make small adjustments and increase uniqueness. These parameters can be 
anything from color to minor model module additions to the current module or 
vertex movements. These parameters can further the differentiation in models and 
drastically increase the number of unique models in a game.

Two characters with the same modules but different parameters

Modulating models in video games opens the doors to generating unique models in 
every game playthrough if we wanted. We can apply it to levels, items, characters, 
or any 3D modeled construct. But the power is really in finding new ways to 
make smaller modules so that the modules compound to make seemingly infinite 
possibilities. This method has the drawback of needing a lot of processing power and  
it might use more memory when it fully expands as compared to traditional methods.

You can pursue areas of further learning such as the field of graphics programming 
to gain more knowledge on PCG with 3D models. You will need a strong 
understanding of 3D space mathematics, which it includes but is not limited to 
calculus, linear algebra, and geometry. The study of computer science can usually 
include most of what you need to know.



Chapter 10

[ 221 ]

Items
Besides using parameters, another way that model generation compounds is through 
item generation. If a character is built of armor pieces and uses weapons that are 
procedurally generated, then each one of those pieces has properties that can be 
manipulated or modularized. Just like our sword from Chapter 6, Generating Modular 
Weapons, the item will be made of a certain amount of pieces. However, imagine if 
each of the pieces was then made of another set of pieces and so on.

Compounding model generation through item generation can create a truly unique 
experience. However, having to generate that many objects would be costly to our 
performance due to the amount of time and space it would require. It would also  
be hard on the player if every single object in the game looked different. People look 
for patterns.

One option would be to generate an item and then store a reference to that model  
for later use. By reusing some things, we give the player some patterns to work  
with. An example of this would be to generate all swords that do fire damage to  
be rendered with a red glow.

We still need to consider things like overloading our system, machine, or even the 
player. We need to strike a balance when it comes to model generation. You can 
potentially create a system that can generate trillions of unique objects, but without 
the proper processing power and memory management, it might not be a practical 
solution. It could be too overwhelming for the player to have that many options.

Item generation is another form of model generation or sprite generation. For further 
study, you will need a foundation in 2D and 3D space mathematics. However, items 
usually impact how the player interacts with their environment. So in addition to 
programming and mathematics, it would be beneficial to spend some time studying 
game design and user experience. Being able to fully conceptualize the balance that 
needs to be applied to item generation makes you a well-rounded developer.



Generating the Future

[ 222 ]

Levels
Props used to fill the empty space in levels are similar, in this sense of creating 
patterns. We can create patterns with our props to lead the player to places of 
interest. An example of this would be to generate the interior of a building with 
items we might expect to see in that building. We need to think like a level  
designer in this sense.

An old time tavern or bar prop set

The challenge would be to place the props in such a way that is believable. One way 
would be to tag the prop with a general descriptor such as a table or a chair. Then, 
tag an area in a modular room where a table might show up with the table tag. Any 
table variant prop will now only generate on table areas.

Levels push the boundaries of PCG simply because they can be as small as a room 
of a house or as big as a planet. We can be very minute with our modulation if we 
choose. Either we can create an environment by connecting modules, or we can 
simply set up a space and allow modules to populate the area.

Currently, technology has reached a point, giving us, as game developers, a choice to 
make. We can make contained levels within a linear or semi expansive game or we 
can make a universe full of procedurally generated levels. Either choice has pros and 
cons. Besides the requirement difference in processing power and memory, there is a 
question of game design. I need to be certain that the experience we wish to deliver 
to the player requires PCG or we will be wasting development time and resources.



Chapter 10

[ 223 ]

Modular dungeon versus a procedurally generated world (left: Daggerfall, right: No Man's Sky)

Texture
One thing that really ties together a level or character design is texture. This is the 
very reason textures are designed by human hands. They usually convey a specific 
tone. But one thing that we can use to our advantage is the fact that a lot of textures 
happen naturally.

This would be similar to the stripes on a tiger. Realistically, we wouldn't see a 
constant pattern around the tiger, though. We would have to break the tiger up  
into sections of texture such as, the most prominent stripes would be on the back  
and they would fade as it wrapped to the stomach.

Procedurally generated animal and textures (No Man's Sky)



Generating the Future

[ 224 ]

One way to accomplish this is to have animals of a similar shape so that the texture 
map will apply similarly to the different animal models. The textures can be tinted 
in different colors so that the animal shape and color will stand out over the texture, 
which is more ambient. Also, making the colors of the texture similar will blend the 
texture patterns and make the texture more subtle and less noticeable.

In theory, textures should be easy to generate. We can reference naturally occurring 
patterns such as fractals to create random yet organic looking textures. However, in 
practice, texture generation requires a bit more thought than just applying random 
patterns. This brings us back to the ideas of game design and user experience.

The player is looking for patterns similar to the ones they see in reality. If you have 
a game full of random textures, it can be disorienting for the player. Instead, we try 
to find ways to replicate familiar patterns such as stones on a building, the bark of a 
tree, or stripes on an animal. This leads us to, again, a modularization solution such 
as the one described previously.

Terrain
Texture and terrain can have similar procedural generation beginnings. With either, 
we can use a fractal or noise patterns as a basis. We can create a height map that can 
be wrapped around objects. An alternative for our planet in Chapter 9, Generating a 
3D Planet, would have been to use a Perlin noise distortion height map.

A height map is a texture that has 3D qualities. You would then apply the height 
map texture to the 3D model to give the model a 3D texture. As you can see in the 
following figure, this is an easy way to create a terrain.

Noise image used to create height map



Chapter 10

[ 225 ]

Besides the actual texture of the ground, tons of work has gone into making tree and 
foliage generators. Terrain is one of the better defined constructs in PCG. This is a 
good starting point for anyone learning 3D PCG.

Physics
Physics is very well defined as a theory, so it translates well to programming 
simulations and subsequently, game design. However, physics is a separate field 
from PCG. Still, physics can be used to aid us in our execution of PCG.

An example of using physics as a mechanism of PCG is the popular mobile game, 
Angry Birds. In Angry Birds, a modular structure is presented but it then has physics 
applied to it as a means to restructure it. The effects of the physics create new 
structures that then impact how the game is played. 

The Angry Birds' gameplay is based on physics

The trade-off is that physics requires a lot of processing power. Current technology 
now provides dedicated hardware to processing just the physical simulations in 
games. It can add very unique game playthrough.

Physics is its own field of study, so it is a good place to start when researching new 
ways to apply physics to PCG. There are a lot of physics engines available such as 
the Open Dynamic Engine, so it might be more beneficial to research new ways 
to apply current physics systems to PCG. An idea would be to add destructible 
structures to your game that then leave ruins when they are destroyed.



Generating the Future

[ 226 ]

Animation
Animation generation is more common than one might think. Have you ever played 
a game where an NPC turned to look in your direction? This is a procedurally 
generated animation.

Mr. I in Mario 64, changing the direction it looks in toward Mario

These types of animations are more intuitively created procedurally. A similar 
example is an NPC moving towards you as you fled. The NPC would have to 
procedurally generate the path and animate its position through it. This is only 
a partial animation, though, as we would still have to animate the walk or run 
animation as well. The walk/run animation would be much harder to generate 
procedurally so we usually use key frame animation here.

Animation is something that has been studied in the academic realm for a while. 
Animating physical reactions is a big part of this study, but natural movement comes 
up a lot too. We use key frame animation for things like movement because we need 
the animations to look believable or it breaks immersion. However, it might be the 
case that procedurally generated animations are preferred eventually.

An example of procedurally generating an animation that relied on believability might 
be if you were to take a randomly generated creature that we knew would walk on 
some number of feet, we generated the movement animation. We would place an 
alternating back and forth motion on the feet and an alternating swing or sway on  
the body. Perhaps even add alternating animations on any other limbs as well.



Chapter 10

[ 227 ]

Animation is another field that can be studied all on its own. If you were looking 
for ways to generate animation with PCG, it would be worth your time to study key 
frame animation. Usually, when generating animations, there is a certain amount of 
physics involved as well. If you imagine walking, it is a very physics-intensive action 
where your body is constantly fighting against gravity.

AI
Artificial intelligence, like physics and animation, is also its own field of study. 
We can use PCG to enhance certain aspects of AI. In Chapter 7, Adaptive Difficulty, 
we used PCG to rewrite a section of our AI. This isn't always the most practical 
approach though.

AI for games can be easily visualized as a state machine or a graph of connected 
behaviors. Some actions in the AI graph might lead to others or some situations 
might cause an AI to enact a certain behavior. In the following diagram, we see 
rectangles represented as states and arrows representing states transitioning into 
other states. This network of states can be as complex or simple as we like.

AI state machine



Generating the Future

[ 228 ]

An example of a complex AI state machine is Bethesda's Radiant AI. This AI 
system has the NPCs react to the actions of the player, but also has them generate 
a daily routine. They can go to work, travel, and some might set out to attempt 
assassinations. These behaviors are programmed separately, but then the routine  
is generated at runtime.

Thinking of AI behaviors as content that can be manipulated allows us to use the 
principles of PCG to generate and manipulate our AI in-game. However, there 
are many more ways to implement artificial intelligence other than using a state 
machine. With that in mind, it would be a good start to study artificial intelligence  
in general to find the best ways to apply PCG to it.

Story
Adding in the functionality for a player to influence the outcome of a game story can 
look much like a state machine as well. Usually, these state machines are much less 
complicated though. There are certain things that can't be generated well quite yet 
like voiceovers in terms of tone and conveying emotion.

Players have come to expect a certain level of storytelling so when certain things are 
difficult to produce, it narrows the availability of additions like multiple storylines. 
What keeps procedural storytelling to a minimum is the fact that what makes a good 
story is very subjective. Physics and graphics are all based on hard math but story is 
based on opinion. And we don't want to deliver a subpar story to our player.

With that in mind, we could map out elements to a story or several stories combined. 
Then, we could either randomly choose the arrangement of story path states that we 
want the player to follow, or we could react to the player's behavior in certain events. 
This is the typical approach as of right now, but usually on a very subtle scale.

You can think of Bethesda's The Elder Scrolls series or BioWare's Mass Effect series as 
examples of how a player-driven story would look and feel. The outcome of the story 
is generally the same or, at most, has a few variants. In general, we see more success 
in generating micro-stories like quests, which is something we see in The Elder Scrolls 
5: Skyrim as part of the Radiant Quests system.

In theory, though, you can generate whole stories given the right formula and 
variables. This is much like generating music. There is a structure to a story 
with certain areas that can be interchangeable like the sounds of a song. To fully 
understand the formula and extent of a story, you would need to research creative 
storytelling, just like you would research music theory to better generate music.



Chapter 10

[ 229 ]

The player sandbox
The player sandbox has become very popular lately. Even some games that have 
a linearly progressing story will provide open areas for the player to explore and 
generally progress the story at their own will. Allowing the player to do as they  
will is a form of content generation. It is also the other way to procedurally  
generate story.

Hello Games' No Man's Sky is a giant sandbox that is meant for the player to explore. 
There is no formal story, per say, but the player will go on many adventures simply 
exploring the game universe. This is one answer to procedurally generating story.

The sandbox is also a good way to generate content simply by constructing some 
tools and letting the player build their own world. Keep in mind that procedural 
generation does not always mean random generation. Allowing the player to build 
their own experience has the same effect, if not providing more immersion, then 
randomly generating the experience for them.

Terraria allowing players to build structures of any shape and size



Generating the Future

[ 230 ]

Summary
Even though randomization makes our procedures more spontaneous, it isn't 
always the correct path to take in PCG. You should be willing to explore the more 
involved route of fleshing out the modules or states to provide the player the best 
possible experience. In some cases, you should look to constrain your PCG to some 
parameters and tight bounds, while other times, you might want to turn over control 
to the payer entirely and let them choose their own fate.

In this chapter, we discussed the many ways we can apply PCG. However,  
the discussion of PCG goes far beyond this book and Unity. You did learn the 
different areas to begin your research of PCG in and the various fields in which  
it can be applied.

PCG is a great idea. We can generate whole universes at runtime, making our file  
size incredibly small while making our game incredibly huge. We can use it to  
spend less time designing art for our game by reusing art modules in inventive  
ways. We can make every playthrough of a game unique.

PCG is not a new concept, but as computers become more capable so does PCG.  
Fewer people can do more by making game development PCG heavy and using  
it wisely. PCG has a bright and uniquely random future ahead of it.



[ 231 ]

Index
Symbols
3D models  218-220
3D objects

generating  192

A
adaptive difficulty

about  141, 142, 159-161
Enemy AI  162-164
game, finishing up  164-167

algorithm
chambers  66
designing  63
entrance, determining  68, 69
essential path  65, 66
exit, determining  68, 69
grid  64, 65
grid, filling  67, 68
overview  63
random path  66
summary  69

Animation folder, Roguelike project
about  25
Fonts folder  25
Prefabs folder  25
Scenes folder  25
Scripts folder  26-31

armor items  100
array  35-38
artificial intelligence (AI)  141, 227, 228
AudioSauna

URL  176

B
base line, music

about  175
script, setting up  175, 176
Sound Manager script  176-187

BoardManager class  83-86, 148
BuildEssentialPath function  92

C
character facing directions

adding  135-138
chest

implementing  103, 104
spawning  104-106

Chest prefab  100-103

D
data structures, Dungeon Board

about  70
array  35, 36
dictionary, using  37, 38, 70
exit sign  73
linked list  36, 37
options  34
prefab setup  72
queue  71, 72

dungeon
about  63
items, generating in  100
seeding  91

Dungeon Board
about  61
enemies, adding  151-156



[ 232 ]

dungeon crawler  63
DungeonManager class  74-83
dynamic  35

E
enemies

adding, to Dungeon Board  151-156
adding, to world board  147-151
fighting  156, 158, 159

Enemy AI  162-164
Enemy class  142
essential path  65, 66
exit sign  73, 74

F
first in first out (FIFO)  71

G
GameManager class  88, 89
GameManager.cs script  27-30
game world

health items, generating in  94
grid

about  64, 65
filling  67, 68

H
health items

generating, in game world  94, 95
height map  224

I
icosahedron sphere  205
initial Game Board

about  47-50
code, connecting  51-55

Item prefab  106
items

generating  221
generating, in dungeon  100
player, adding to  109-114

L
levels  222
linked list  36-38

M
measure

about  173, 174
dividing  174, 175

Minecraft  3
modular weapon script

actions  122-126
Moving Object class  142
multi mesh planet

about  205-214
exploring  214-216

multiple image prefab
creating  121, 122

music
base line  175
concept  169
melody  171, 172
repetition  172, 173
tempo  170
tension, adding  187-190

music repetition
about  172, 173
measure  173, 174
measure, dividing  174, 175
procedurally generated music  

algorithm  173

O
object pooling  34

P
pathfinding  63
PathTile class  75
PCG

about  1-3, 218
algorithm  39-41
applications  5, 6
PRNs  8, 9



[ 233 ]

usage  4, 5
with modules  116

PCG Game Board  55-60
physics  225
player

adding, to item interaction  109-114
Player.cs script

overview  30, 31
player sandbox  229
prefab

setup  72
procedural content generation. See  PCG
procedure  2
pseudo random numbers (PRNs)

about  1, 6, 8
challenge  17
classic Hello World  10-15
in PCG  8
key points  8
PCG Hello World  15-17
random Hello World  9
versus random number  7, 8

Q
queue  71

R
random paths  66
Roguelike

about  19-21, 63
Animation folder  25
base package, importing  23
benefits  21
files  24
music, adding  169
project, setting up  23
setting up  23
URL  22
using  22

Role-playing Game (RPG)  20

S
scene setup

about  41

camera, following  43, 44
layers, adding  45, 46
player, positioning  42

scripted weapon animation
adding  132-134

seed  8
singleton

about  28
URL  28

space complexity  193
spawn point

adding  127
sphere

generating  197-201
randomization, adding  202, 203

Spherical Linear Interpolation (Slerp)
about  133
reference link  133

sprites
configuring  118-121
creating  118-121
setting up  96-99, 142-146

statistics
of modular PCG  117

T
terrain  224
texture  223, 224
third dimension (3D)

adding  192, 193
bad time complexity  203, 204
geometry  194
randomization, adding  202, 203
space complexity  203, 204
sphere, generating  197-201
Unity primitive sphere,  

working with  194-197
versus 2D  193

tiles  34
time complexity  193

U
Unity Editor  90
Unity primitive sphere

working with  194-197



[ 234 ]

W
weapon pick up

adding  128-132
world board

enemies, adding  147-151



Thank you for buying  
Procedural Content Generation 
for Unity Game Development

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective 
MySQL Management, in April 2004, and subsequently continued to specialize in publishing 
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting 
and customizing today's systems, applications, and frameworks. Our solution-based books 
give you the knowledge and power to customize the software and technologies you're using 
to get the job done. Packt books are more specific and less general than the IT books you have 
seen in the past. Our unique business model allows us to bring you more focused information, 
giving you more of what you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality,  
cutting-edge books for communities of developers, administrators, and newbies alike.  
For more information, please visit our website at www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should 
be sent to author@packtpub.com. If your book idea is still at an early stage and you would 
like to discuss it first before writing a formal book proposal, then please contact us; one of our 
commissioning editors will get in touch with you. 

We're not just looking for published authors; if you have strong technical skills but no writing 
experience, our experienced editors can help you develop a writing career, or simply get some 
additional reward for your expertise.



Learning Unity 2D Game 
Development by Example
ISBN: 978-1-78355-904-6            Paperback: 266 pages

Create your own line of successful 2D games with 
Unity!

1.	 Dive into 2D game development with  
no previous experience.

2.	 Learn how to use the new Unity 2D toolset.

3.	 Create and deploy your very own 2D game  
with confidence.

Unity 4.x Game Development by 
Example Beginner's Guide
ISBN: 978-1-84969-526-8            Paperback: 572 pages

A seat-of-your-pants manual for building fun,  
groovy little games quickly with Unity 4.x

1.	 Learn the basics of the Unity 3D game  
engine by building five small, functional  
game projects.

2.	 Explore simplification and iteration  
techniques that will make you more  
successful as a game developer.

3.	 Take Unity for a spin with a refreshingly 
humorous approach to technical manuals.

Please check www.PacktPub.com for information on our titles



Getting Started with Unity 4 
Scripting [Video]
ISBN: 978-1-84969-612-8         Duration: 02:06:54 hours

Harness the power of scripting in Unity 4 to build 
great games

1.	 A great resource for anyone new to Unity 4 
scripting.

2.	 Clear step-by-step explanations for each line  
of code.

3.	 Create custom components that interact  
with Unity's game engine components.

4.	 Enhance your game with an easy-to-use  
and extendable input system that works  
on leading game platforms.

Unity 3D Game Development by 
Example [Video]
ISBN: 978-1-84969-530-5            Duration: 02:30 hours

Learn how Unity3D "Thinks" by understanding 
Unity's UI and project structure to start building  
fun games in Unity 3D right away

1.	 2 and a half hours of Unity screencast  
tutorials, broken into bite-sized sections.

2.	 Create 3D graphics, sound, and challenging 
gameplay.

3.	 Build game UI, high score tables, and other 
extra features.

4.	 Program powerful game logic with C# 
scripting.

Please check www.PacktPub.com for information on our titles


	Cover
	Copyright
	Credits
	Disclaimer
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Pseudo Random Numbers
	Introducing PCG
	Usage of PCG
	Application of PCG
	Pseudo random numbers
	Random versus pseudo random numbers
	PRNs in PCG
	Random Hello World
	Classic Hello World
	PCG Hello World


	Challenge
	Summary

	Chapter 2: Roguelike Games
	An introduction to Roguelike games
	Why Roguelike?
	Our own Roguelike project
	Setting up the project
	Importing the base project
	File overview
	Animation
	Fonts
	Prefabs
	Scenes
	Scripts


	Summary

	Chapter 3: Generating an Endless World
	Data structure choice
	Array
	Linked list
	Dictionary

	PCG algorithm overview
	Scene setup
	Player positioning
	Camera following
	Layers

	Initial Game Board
	Connecting code
	The PCG Game Board

	Summary

	Chapter 4: Generating Random Dungeons
	Algorithm design
	Algorithm overview
	The grid
	Essential path
	Random path and chambers
	Filling in the rest of the gird
	Placing the entrance and exit
	Algorithm summary

	Data structures
	Back to the map
	Queue
	Prefab setup
	An exit sign

	DungeonManager
	BoardManager
	Player
	GameManager
	Back to the Unity Editor
	Seeding the dungeon
	Challenge
	Summary

	Chapter 5: Randomized Items
	Generating health items in the game world
	Implementing health item generation
	Setting up sprites


	Generating items in the dungeon
	The Chest prefab
	Chest implementation
	Spawning the chest
	The Item prefab
	Item code
	Adding player to item interaction

	Summary

	Chapter 6: Generating Modular Weapons
	PCG with modules
	Statistics of modular PCG
	Creating and configuring new sprites
	Creating a multiple image prefab

	Modular weapon scripts
	Adding a spawn point
	Adding a weapon pick up
	Adding scripted weapon animation
	Adding character facing directions
	Summary

	Chapter 7: Adaptive Difficulty
	Setting up sprites
	Adding enemies to the world board
	Adding enemies to the Dungeon Board
	Fighting the enemy
	Adaptive difficulty
	Enemy AI
	Finishing up

	Summary

	Chapter 8: Generating Music
	Concept of music
	Tempo
	Melody
	Repetition
	Procedurally generated music algorithm
	Measure
	Dividing the measure

	The base line
	Setting up the script
	The Sound Manager script

	Adding tension

	Summary

	Chapter 9: Generating a 3D Planet
	Adding a third dimension
	3D vs 2D
	Know your geometry
	Working with the Unity primitive sphere
	Generating a sphere
	Adding randomization
	Bad time and space complexities

	Multi mesh planet
	Exploring the planet
	Summary

	Chapter 10: Generating the Future
	Models
	Items
	Levels
	Texture
	Terrain
	Physics
	Animation
	AI
	Story
	The player sandbox
	Summary

	Index



