Datasets:
Tasks:
Visual Question Answering
Formats:
parquet
Languages:
English
Size:
10K - 100K
ArXiv:
Tags:
Synthetic
License:
Update README.md
Browse files
README.md
CHANGED
@@ -98,13 +98,13 @@ Each instance of the dataset has the following information:
|
|
98 |
|
99 |
|
100 |
- **Curated by:** Iñigo Alonso, Gorka Azcune, Ander Salaberria, Jeremy Barnes, and Oier Lopez de Lacalle.
|
101 |
-
- **Funded by:**
|
102 |
- **Shared by:** HiTZ Center - Ixa, University of the Basque Country UPV/EHU.
|
103 |
- **License:** Apache License 2.0.
|
104 |
|
105 |
### Dataset Sources
|
106 |
|
107 |
-
- **Repository (Project & Code):**
|
108 |
- **[Paper](https://arxiv.org/abs/2503.03854):** Alonso, I., Salaberria, A., Azkune, G., Barnes, J., & de Lacalle, O. L. (2025). Vision-Language Models Struggle to Align Entities across Modalities. arXiv preprint arXiv:2503.03854.
|
109 |
- **[CLEVR paper](https://openaccess.thecvf.com/content_cvpr_2017/html/Johnson_CLEVR_A_Diagnostic_CVPR_2017_paper.html):** Johnson, J., Hariharan, B., Van Der Maaten, L., Fei-Fei, L., Lawrence Zitnick, C., & Girshick, R. (2017). Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2901-2910).
|
110 |
|
@@ -124,4 +124,4 @@ Each instance of the dataset has the following information:
|
|
124 |
|
125 |
## More Information
|
126 |
|
127 |
-
For more details on the methodology, dataset creation, and experimental results, please refer to the full paper: "Vision-Language Models Struggle to Align Entities across Modalities" (`https://arxiv.org/abs/2503.03854`) and the project repository
|
|
|
98 |
|
99 |
|
100 |
- **Curated by:** Iñigo Alonso, Gorka Azcune, Ander Salaberria, Jeremy Barnes, and Oier Lopez de Lacalle.
|
101 |
+
- **Funded by:** This work is partially supported by the Ministry of Science and Innovation of the Spanish Government (AWARE project TED2021-131617B-I00, DeepKnowledge project PID2021-127777OB-C21), project funded by MCIN/AEI/10.13039/501100011033 and by FEDER, the Basque Government (IXA excellence research group IT1570-22), the European Union under Horizon Europe (Project LUMINOUS, grant number 101135724), and the UK Engineering and Physical Sciences Research Council (grant EP/W002876/1).
|
102 |
- **Shared by:** HiTZ Center - Ixa, University of the Basque Country UPV/EHU.
|
103 |
- **License:** Apache License 2.0.
|
104 |
|
105 |
### Dataset Sources
|
106 |
|
107 |
+
- **Repository (Project & Code):** [https://github.com/hitz-zentroa/MATE](https://github.com/hitz-zentroa/MATE)
|
108 |
- **[Paper](https://arxiv.org/abs/2503.03854):** Alonso, I., Salaberria, A., Azkune, G., Barnes, J., & de Lacalle, O. L. (2025). Vision-Language Models Struggle to Align Entities across Modalities. arXiv preprint arXiv:2503.03854.
|
109 |
- **[CLEVR paper](https://openaccess.thecvf.com/content_cvpr_2017/html/Johnson_CLEVR_A_Diagnostic_CVPR_2017_paper.html):** Johnson, J., Hariharan, B., Van Der Maaten, L., Fei-Fei, L., Lawrence Zitnick, C., & Girshick, R. (2017). Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2901-2910).
|
110 |
|
|
|
124 |
|
125 |
## More Information
|
126 |
|
127 |
+
For more details on the methodology, dataset creation, and experimental results, please refer to the full paper: "Vision-Language Models Struggle to Align Entities across Modalities" (`https://arxiv.org/abs/2503.03854`) and the project [repository](https://github.com/hitz-zentroa/MATE).
|