Datasets:
HiTZ
/

Modalities:
Text
Formats:
csv
Libraries:
Datasets
pandas
License:
maihered commited on
Commit
7a48572
·
verified ·
1 Parent(s): 4a9f1bf

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +54 -80
README.md CHANGED
@@ -1,8 +1,9 @@
1
  ---
2
  license: cc-by-nc-4.0
3
  language:
 
4
  - eu
5
- pretty_name: XNLI EU
6
  size_categories:
7
  - 1K<n<10K
8
  dataset_info:
@@ -66,118 +67,91 @@ configs:
66
  data_files:
67
  - split: test
68
  path: xnli.test.eu.native.tsv
69
- task_categories:
70
- - text-classification
71
  ---
72
- # Dataset Card for EuskañolDS
73
 
74
  <!-- Provide a quick summary of the dataset. -->
75
 
76
- EuskañolDS is a naturally sourced corpus for Basque-Spanish code-switching, created by filtering publicly available corpora in Basque and Spanish.
77
 
78
  ## Dataset Details
79
 
80
  ### Dataset Description
81
 
82
  <!-- Provide a longer summary of what this dataset is. -->
83
- Code-switching (CS) remains a significant challenge in Natural Language Processing (NLP), mainly due a lack of relevant data. In the context of the contact between the Basque and Spanish languages in the north of the Iberian Peninsula, CS frequently occurs in both formal and informal spontaneous interactions.
84
- However, resources to analyse this phenomenon and support the development and evaluation of models capable of understanding and generating code-switched language for this language pair are almost non-existent. We introduce a first approach to develop a naturally sourced corpus for Basque-Spanish code-switching. Our methodology consists of identifying CS texts from previously available corpora using language identification models, which are then manually validated to obtain a reliable subset of CS instances.
 
85
 
86
- - **Language(s) (NLP):** Basque (eu), Spanish (es)
87
- - **License:** EuskañolDS is distributed under the same licenses as the corpora it is derived from.
88
 
89
  ### Dataset Sources
90
 
91
  <!-- Provide the basic links for the dataset. -->
92
 
93
- | Name | Size(Tokens) | Source | Topics |
94
- |---------------------------------------------------------------------------------|-------------:|-------------------------------------------|--------------------------------------|
95
- | [BasqueParl](https://github.com/ixa-ehu/basqueparl) | 14M | Parliamentary transcriptions | Political discourse |
96
- | [Heldugazte](https://github.com/ixa-ehu/heldugazte-corpus) | 37M | Twitter | News, sport, music, nationalist left |
97
- | [Covid-19](https://github.com/joseba-fdl/basque_twitter_covid19_corpus) | 57M | Twitter (September 2019 to February 2021) | Covid-19, political issues |
98
 
 
99
 
100
- ### Links
101
-
102
- - **Repository:** [Link to the GitHub Repository](https://github.com/hitz-zentroa/euskanolDS/)
103
- - **Paper:** [Link to the Paper](https://aclanthology.org/2025.calcs-1.1)
104
-
105
-
106
-
107
-
108
- <!--## Uses -->
109
-
110
  ## Dataset Structure
111
- The dataset has two subsets:
112
- - **Silver**: automatically filtered.
113
- - **Gold**: manually validated.
114
-
115
-
116
  ### Splits
117
-
118
-
119
- | Split | Tokens | Instances | Avg. Length |
120
- |--------|--------:|----------:|------------:|
121
- | Silver | 537,648 | 20,008 | 26.87 |
122
- | Gold | 36,860 | 927 | 39.76 |
123
-
124
-
125
- <!-- ### Dataset Fields -->
126
-
127
  ### Dataset Instances
128
-
129
- Examples from the dataset:
130
-
131
- | Source | Instance | Translation | Type of CS |
132
- |:------------------:|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------------------------:|:----------------:|
133
- | HelduGazte | bihar zazpi terditan gora y yo me muerooooooo | tomorrow up at seven thirty and i'm going to die | Intra-sentential |
134
- | BasqueParl | Por lo tanto, no tengo nada más que añadir. Eta eskerrik asko denoi akordio batera heldu garelako. | Therefore, I don't have anything else to add. And thank you everyone for having reached an agreement. | Inter-sentential |
135
- | Covid-19 | Katxis!Veo a la tropa baja... Eutsi goiari! | Heck! I see the spirits are low... Cheer up! | Emblematic |
136
-
137
-
138
-
139
-
140
- <!-- ## Bias, Risks, and Limitations -->
141
-
142
  <!-- This section is meant to convey both technical and sociotechnical limitations. -->
143
-
144
  <!--## Citation
145
-
146
  <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section.
147
  RELLENAR-->
148
-
149
  **BibTeX:**
150
  ```
151
- @inproceedings{heredia-etal-2025-euskanolds,
152
- title = "{E}uska{\~n}ol{DS}: A Naturally Sourced Corpus for {B}asque-{S}panish Code-Switching",
153
  author = "Heredia, Maite and
 
 
 
154
  Barnes, Jeremy and
155
  Soroa, Aitor",
156
- editor = "Winata, Genta Indra and
157
- Kar, Sudipta and
158
- Zhukova, Marina and
159
- Solorio, Thamar and
160
- Ai, Xi and
161
- Hamed, Injy and
162
- Ihsani, Mahardika Krisna Krisna and
163
- Wijaya, Derry Tanti and
164
- Kuwanto, Garry",
165
- booktitle = "Proceedings of the 7th Workshop on Computational Approaches to Linguistic Code-Switching",
166
- month = may,
167
- year = "2025",
168
- address = "Albuquerque, New Mexico, USA",
169
- publisher = "Association for Computational Linguistics",
170
- url = "https://aclanthology.org/2025.calcs-1.1/",
171
- pages = "1--5",
172
- ISBN = "979-8-89176-053-0"
173
  }
174
  ```
175
-
176
  **APA:**
177
-
178
- Heredia, M., Barnes, J., & Soroa, A. (2025). EuskañolDS: A Naturally Sourced Corpus for Basque-Spanish Code-Switching. In Proceedings of the 7th Workshop on Computational Approaches to Linguistic Code-Switching (pp. 1–5). Association for Computational Linguistics.
179
-
180
  <!--
181
  ## Dataset Card Contact
182
-
183
  [More Information Needed]-->
 
1
  ---
2
  license: cc-by-nc-4.0
3
  language:
4
+ - es
5
  - eu
6
+ pretty_name: EuskañolDS
7
  size_categories:
8
  - 1K<n<10K
9
  dataset_info:
 
67
  data_files:
68
  - split: test
69
  path: xnli.test.eu.native.tsv
 
 
70
  ---
71
+ # Dataset Card for XNLIeu
72
 
73
  <!-- Provide a quick summary of the dataset. -->
74
 
75
+ XNLIeu is an extension of [XNLI](https://huggingface.co/datasets/xnli) translated from English to **Basque**. It has been designed as a cross-lingual dataset for the Natural Language Inference task, a text-classification task that consists on classifying pairs of sentences, a premise and a hypothesis, according to their semantic relation out of three possible labels: entailment, contradiction and neutral.
76
 
77
  ## Dataset Details
78
 
79
  ### Dataset Description
80
 
81
  <!-- Provide a longer summary of what this dataset is. -->
82
+ XNLI is a popular Natural Language Inference (NLI) benchmark widely used to evaluate cross-lingual Natural Language Understanding (NLU) capabilities across languages.
83
+ We expand XNLI to include Basque, a low-resource language that can greatly benefit from transfer-learning approaches.
84
+ The new dataset, dubbed XNLIeu, has been developed by first machine-translating the English XNLI corpus into Basque, followed by a manual post-edition step.
85
 
86
+ - **Language(s) (NLP):** Basque (eu)
87
+ - **License:** XNLIeu is derived from XNLI and distributed under its same license.
88
 
89
  ### Dataset Sources
90
 
91
  <!-- Provide the basic links for the dataset. -->
92
 
93
+ - **Repository:** [Link to the GitHub Repository](https://github.com/hitz-zentroa/xnli-eu/)
94
+ - **Paper:** [Link to the Paper](https://aclanthology.org/2024.naacl-long.234/)
 
 
 
95
 
96
+ ## Uses
97
 
98
+ XNLieu is meant as an cross-lingual evaluation dataset. It can be used in combination with the train sets of [XNLI](https://huggingface.co/datasets/xnli) for a cross-lingual zero-shot setting, and we provide a machine-translated train set in both "eu" and "eu_mt" splits to implement a translate-train setting.
 
 
 
 
 
 
 
 
 
99
  ## Dataset Structure
100
+ The dataset has three subsets:
101
+ - **eu**: XNLIeu, machine-translated and post-edited from English to Basque.
102
+ - **eu_MT**: XNLIeu<sub>MT</sub>, a machine-translated version prior post-edition.
103
+ - **eu_native**: An original, non-translated test set.
 
104
  ### Splits
105
+ | name |train |validation|test|
106
+ |-------------|-----:|---------:|---:|
107
+ |eu |392702| 2490|5010|
108
+ |eu_mt |392702| 2490|5010|
109
+ |eu_native |- | - |621 |
110
+ ### Dataset Fields
111
+ All splits have the same fields: *premise*, *hypothesis* and *label*.
112
+ - **premise**: a string variable.
113
+ - **hypothesis**: a string variable.
114
+ - **label**: a classification label, with possible values including entailment (0), neutral (1), contradiction (2).
115
  ### Dataset Instances
116
+ An example from the "eu" split:
117
+ ```
118
+ {
119
+ "premise": "Dena idazten saiatu nintzen"
120
+ "hypothesis": "Nire helburua gauzak idaztea zen.",
121
+ "label": 0,
122
+ }
123
+ ```
124
+ ## Bias, Risks, and Limitations
 
 
 
 
 
125
  <!-- This section is meant to convey both technical and sociotechnical limitations. -->
126
+ The biases of this dataset have been studied and reported in the paper.
127
  <!--## Citation
 
128
  <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section.
129
  RELLENAR-->
 
130
  **BibTeX:**
131
  ```
132
+ @inproceedings{heredia-etal-2024-xnlieu,
133
+ title = "{XNLI}eu: a dataset for cross-lingual {NLI} in {B}asque",
134
  author = "Heredia, Maite and
135
+ Etxaniz, Julen and
136
+ Zulaika, Muitze and
137
+ Saralegi, Xabier and
138
  Barnes, Jeremy and
139
  Soroa, Aitor",
140
+ editor = "Duh, Kevin and
141
+ Gomez, Helena and
142
+ Bethard, Steven",
143
+ booktitle = "Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)",
144
+ month = jun,
145
+ year = "2024",
146
+ address = "Mexico City, Mexico",
147
+ publisher = "Association for Computational Linguistics",
148
+ url = "https://aclanthology.org/2024.naacl-long.234",
149
+ pages = "4177--4188",
150
+ abstract = "XNLI is a popular Natural Language Inference (NLI) benchmark widely used to evaluate cross-lingual Natural Language Understanding (NLU) capabilities across languages. In this paper, we expand XNLI to include Basque, a low-resource language that can greatly benefit from transfer-learning approaches. The new dataset, dubbed XNLIeu, has been developed by first machine-translating the English XNLI corpus into Basque, followed by a manual post-edition step. We have conducted a series of experiments using mono- and multilingual LLMs to assess a) the effect of professional post-edition on the MT system; b) the best cross-lingual strategy for NLI in Basque; and c) whether the choice of the best cross-lingual strategy is influenced by the fact that the dataset is built by translation. The results show that post-edition is necessary and that the translate-train cross-lingual strategy obtains better results overall, although the gain is lower when tested in a dataset that has been built natively from scratch. Our code and datasets are publicly available under open licenses.",
 
 
 
 
 
 
151
  }
152
  ```
 
153
  **APA:**
154
+ Heredia, M., Etxaniz, J., Zulaika, M., Saralegi, X., Barnes, J., & Soroa, A. (2024). XNLIeu: a dataset for cross-lingual NLI in Basque. In Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers) (pp. 4177–4188). Association for Computational Linguistics.
 
 
155
  <!--
156
  ## Dataset Card Contact
 
157
  [More Information Needed]-->