import pandas as pd import datasets _DESCRIPTION = """\ Multi-source dataset of antibody-mutation interactions including IC50, binding, escape, and affinity measurements. """ _FEATURES = { 'antibody_name': datasets.Value("string"), 'antigen_lineage': datasets.Value("string"), 'target_value': datasets.Value("float"), 'target_type': datasets.Value("string"), 'source_name': datasets.Value("string"), 'source_doi': datasets.Value("string"), 'assay_name': datasets.Value("string"), 'pdb_id': datasets.Value("string"), 'structure_release_date': datasets.Value("string"), 'structure_resolution': datasets.Value("float"), 'mutations': datasets.Value("string"), 'antigen_chain_ids': datasets.Value("string"), 'antigen_domain': datasets.Value("string"), 'antigen_residue_indices': datasets.Value("string"), 'antigen_residue_indices_trimmed': datasets.Value("string"), 'antigen_host': datasets.Value("string"), 'antibody_heavy_chain_id': datasets.Value("string"), 'antibody_light_chain_id': datasets.Value("string"), 'epitope_residues': datasets.Value("string"), 'epitope_mutations': datasets.Value("string"), 'epitope_domain': datasets.Value("string"), 'epitope_alteration_count': datasets.Value("string"), 'spike_sequence': datasets.Value("string"), 'antibody_heavy_chain_sequence': datasets.Value("string"), 'antibody_light_chain_sequence': datasets.Value("string"), 'antibody_vh_sequence': datasets.Value("string"), 'antibody_vl_sequence': datasets.Value("string"), 'antigen_sequence': datasets.Value("string"), 'antigen_sequence_trimmed': datasets.Value("string"), 'antigen_sequence_without_indels': datasets.Value("string"), 'antigen_sequence_trimmed_without_indels': datasets.Value("string"), 'antigen_pdb_sequence': datasets.Value("string"), 'antigen_pdb_sequence_trimmed': datasets.Value("string"), } _TABLES = { "drdb": { "file": "data/drdb_binding_potency.parquet", "features": { **_FEATURES, } }, "covabdab": { "file": "data/covabdab_binding.parquet", "features": { **{ **_FEATURES, "target_value": datasets.Value("bool"), } } }, "dms_bloom": { "file": "data/dms_bloom_ab_escape.parquet", "features": { **_FEATURES, } }, "dms_cao": { "file": "data/dms_cao_ab_escape.parquet", "features": { **_FEATURES, } }, "jian_elisa": { "file": "data/jian_elisa_ab_ic50.parquet", "features": { **_FEATURES, } }, "spr": { "file": "data/spr_ab_affinity.parquet", "features": { **_FEATURES, } } } class CovUniBindConfig(datasets.BuilderConfig): def __init__(self, **kwargs): super().__init__(version=datasets.Version("1.0.0"), **kwargs) class CovUniBind(datasets.GeneratorBasedBuilder): BUILDER_CONFIGS = [ CovUniBindConfig(name=table, description=f"{table} subset") for table in _TABLES ] def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features(_TABLES[self.config.name]["features"]), ) def _split_generators(self, dl_manager): file_path = _TABLES[self.config.name]["file"] data_path = dl_manager.download_and_extract(file_path) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": data_path}), ] def _generate_examples(self, filepath): df = pd.read_parquet(filepath) for idx, row in df.iterrows(): yield idx, row.to_dict()