--- license: mit task_categories: - automatic-speech-recognition - text-to-speech language: - en - zh --- # audio-testing ## Overview This is a small, open dataset designed for quick validation of audio-related pipelines and applications, especially for **Text-to-Speech (TTS)** and **Speech-to-Text (STT)** systems. It provides a few short, diverse audio clips and corresponding text transcripts, allowing developers to verify input/output handling, audio processing, and transcription logic without downloading large datasets. ## Contents * 3 short audio samples (`.mp3`, `.wav`) * `metadata.jsonl` file containing text transcripts and file references | Field | Type | Description | | ------- | ---------- | ----------------------- | | `audio` | audio file | Raw audio data | | `text` | string | Transcript of the audio | ## Example Usage ```typescript async function fetchAudio(url: string): Promise<{ data: Buffer; mimeType: string; }> { const response = await fetch(url); if (!response.ok) { throw new Error(`Failed to fetch audio: ${response.statusText}`); } const arrayBuffer = await response.arrayBuffer(); const data = Buffer.from(arrayBuffer); const mimeType = response.headers.get("content-type") || "audio/wav"; return { data, mimeType }; } const audioUrl = "https://huggingface.co/datasets/JacobLinCool/audio-testing/resolve/main/audio/audio-1.mp3"; const { data, mimeType } = await fetchAudio(audioUrl); const transcription = await transcribe(data, mimeType); const words = "this is a test audio generated by the model".split(" "); // pass if WER < 10% let matchCount = 0; for (const word of words) { if (transcription.includes(word)) { matchCount++; } } expect(matchCount / words.length).toBeGreaterThan(0.9); ``` Ideal for verifying: * TTS model output alignment with ground-truth text * STT transcription accuracy and error handling * Audio I/O integration in pipelines or apps ## License MIT License