image
imagewidth (px)
65
845
latex_formula
stringlengths
6
152
\[y=y_{b}-y_{a}\]
\[\int d^{6}y \sqrt{detg_{mn}}\]
\[a^{1}a^{2}a^{3}a^{4}a^{5}\]
\[a+ \frac{1}{2} \geq \frac{5-N}{N(N-1)}\]
\[64x^{6}-80x^{4}+24x^{2}-1\]
\[a=cb^{-1}-bab^{-1}\]
\[2f(x)=-4( \gamma+ \log 4)+b+ \frac{4B \pi^{2} \sqrt{1-x}}{ \sqrt{1+3x}}\]
\[\sum_{i} \beta^{i}\]
\[e^{- \alpha \sqrt{1-e^{2}}x^{0}}\]
\[4(x^{0}-y^{0})-2(x^{0}-y^{0})(1+1)=0\]
\[\sin x_{i}, \cos x_{i}\]
\[f \rightarrow \cos^{2}t- \cos^{2} \theta\]
\[x \rightarrow x+ \frac{1}{3}(2a+b)\]
\[x+(y \div 7)=7b\]
\[\sqrt{y^{2}}=y\]
\[h_{xx}=-h_{yy}\]
\[\lambda \log \lambda\]
\[\tan(2a)=(f_{xy}/f_{xx})\]
\[x_{i}-x=y \tan \theta_{i}\]
\[f(x)=1+C_{1}x+C_{2}x^{2}+ \ldots\]
\[\frac{n}{2}+ \frac{1}{2}\]
\[-a<x<a\]
\[x= \frac{e^{cr}}{ac}\]
\[iu \sin x\]
\[-1 \leq x \leq 1\]
\[x^{a}x^{b}\]
\[A= \int dxh(x)B(x)\]
\[\frac{1}{2} \sqrt{ \frac{5}{3}}\]
\[0< \frac{k \sqrt{2}}{ \sqrt{1+k^{2}}}<1\]
\[g=q \tan \theta\]
\[x^{3}+y^{5}+z^{2}\]
\[a+ \sqrt{-d}b\]
\[17 \div t\]
\[x^{2}+y^{3}z+z^{3}\]
\[\int_{0}^{x}d^{n}x\]
\[a+c\]
\[xy=(z^{2}+i \sqrt{3}t^{2})^{2}\]
\[S^{2} \times S^{2} \times S^{2} \times S^{2}\]
\[\sin^{2} \pi B\]
\[\tan \theta=f\]
\[\frac{6}{ \sqrt{7}}\]
\[E_{0}=-1+4 \frac{1}{4} \frac{1}{2} \frac{1}{2}=- \frac{3}{4}\]
\[z= \frac{1}{ \sqrt{2}}=(x+iy)\]
\[b= \pm \sqrt{ \frac{1}{ \sqrt{1-4c}}}\]
\[\frac{95}{33}\]
\[\int \sqrt{-g}[R- \frac{1}{12}H^{2}]\]
\[\frac{1}{2 \sqrt{3}}\]
\[\sum_{i}a_{i}=0= \sum_{i}t_{i}\]
\[[ab]= \frac{1}{2}(ab-ba)\]
\[\sqrt{nm}\]
\[a= \sqrt{ \frac{6 \sqrt{3}}{5}}\]
\[(t-x)(t+x)>0\]
\[( \frac{1}{2} \frac{1}{2}00)\]
\[(0+0+0+0+(0+2))\]
\[a \neq 5\]
\[(x_{12}x_{23}x_{34}x_{41})\]
\[\sqrt{F_{ab}F^{ab}}\]
\[\log(1+2 \cos( \pi j))\]
\[A_{oo}\]
\[a-b\]
\[a^{i}= \frac{1}{ \sqrt{2m}}(p^{i}+imx_{0}^{i})\]
\[(ab)= \frac{1}{2}(ab+ba)\]
\[\sqrt{s}, \sqrt{s-b}, \sqrt{s-a}\]
\[a= \sqrt{ \frac{ \beta}{ \alpha}}\]
\[f(y, \cos(y), \sin(y))\]
\[\sum l_{i}+ \sum k_{i}+ \sum m_{i}=0\]
\[f(c)=f(a)+ \sqrt{2}f(b)i\]
\[\int Tr\]
\[x^{n-1}+xy^{2}+z^{2}\]
\[[a+i \frac{ \beta}{2},b+i \frac{ \beta}{2}]\]
\[\tan \theta=E/ \sqrt{1-E^{2}}\]
\[\lim_{L \rightarrow \infty}a_{ \pi}L^{2}\]
\[x^{4}-x^{7}\]
\[A^{(1)}=a \cos \sqrt{3t}\]
\[V= \frac{1}{4}k(x- \frac{L}{2})^{2}+ \frac{1}{4}k(x+ \frac{L}{2})^{2}\]
\[\frac{1}{2}4 \times 5-1=9\]
\[\tan[ \frac{n}{2} \sigma]\]
\[c \geq a\]
\[p \geq 7\]
\[\frac{ \sqrt{1- \beta^{2}}}{2 \beta}\]
\[B \times F\]
\[3l-(e_{1}+e_{3}+e_{5}+2e_{7}+e_{8})\]
\[-x \leq y\]
\[(k-b-c) \times(a-b)\]
\[at^{-1}+bt^{-2}\]
\[y= \frac{p}{q}x\]
\[4+x\]
\[x^{3}-x^{7}\]
\[z=x^{2i+2}+ix^{2i+3}\]
\[(a+b+c)\]
\[4x^{3}-3x\]
\[r= \sqrt{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}}\]
\[\frac{3}{2}(1- \frac{3}{32} \alpha)^{-1}\]
\[\frac{8 \times 5}{5+3}= \frac{35 \times 1}{6+1}\]
\[k(r,E,l)= \frac{1}{V(r)} \sqrt{E^{2}- \frac{V(r)}{r^{2}}l(l+1)}\]
\[\sqrt{na}\]
\[2n_{4}+(n_{2}+n_{4}-1)=3n_{4}+n_{2}\]
\[a_{1}+a_{2}=a_{3}+a_{4}+a_{5}+a_{6}\]
\[f= \sum_{n}f_{n}z^{n+1}\]
\[u= \frac{az+b}{cz+d}\]