image
imagewidth (px) 65
845
| latex_formula
stringlengths 6
152
|
|---|---|
\[2.71 \ldots\]
|
|
\[x^{6} \ldots x^{9}\]
|
|
\[1^{+3}+1^{-3}\]
|
|
\[f^{2}-f+x=0\]
|
|
\[\cos(2Mt)\]
|
|
\[\frac{1}{5}\]
|
|
\[-a<b \leq a\]
|
|
\[12^{-1}4531^{-1}23^{-1}6^{-1}4^{-1}\]
|
|
\[- \frac{4483}{945}\]
|
|
\[z=x_{21}x_{13}^{-1}x_{34}x_{42}^{-1}\]
|
|
\[\int_{-n}^{n}d^{4}x\]
|
|
\[z(t)=x(t)+iy(t)\]
|
|
\[\frac{1}{2} \times \frac{1}{2}\]
|
|
\[-bj_{21}=bj_{1}+b+ \frac{1}{2b}\]
|
|
\[[a_{1}] \times[a_{2}] \times[a_{3}]\]
|
|
\[a \neq-b\]
|
|
\[\frac{5}{3}\]
|
|
\[\tan \theta/2\]
|
|
\[x^{6}-x^{9}\]
|
|
\[b= \sqrt{a}\]
|
|
\[\frac{3+z^{2}}{8}+ \frac{(3+z^{2})^{2}}{32}\]
|
|
\[u \rightarrow e^{ \beta}u\]
|
|
\[\sum n_{ \alpha} \leq n, \sum m_{ \alpha} \leq m\]
|
|
\[\frac{149}{84}\]
|
|
\[\frac{y_{1}x_{2}-y_{2}x_{1}}{x_{2}-x_{1}}\]
|
|
\[\lim_{d \rightarrow 2}(R_{ab}- \frac{1}{2}Rg_{ab})/(d-2)\]
|
|
\[u= \tan(z)\]
|
|
\[n=-1+ \sqrt{15}\]
|
|
\[B= \frac{49}{9}\]
|
|
\[(2000)5920-5933\]
|
|
\[1+ \sqrt{2}\]
|
|
\[\theta< \infty\]
|
|
\[(-x)^{-a} \log x\]
|
|
\[(125)-(135)+(735)-(725)\]
|
|
\[\sum_{p=1}^{P}c_{p}n^{-2p}\]
|
|
\[w^{i+j}+w^{-j}+w^{-i}\]
|
|
\[a+ \frac{1}{2} \geq \frac{1}{2}\]
|
|
\[n= \frac{n_{2}}{n_{1}-1}= \frac{n_{3}}{n_{1}-1}\]
|
|
\[\sin( \pi j)\]
|
|
\[b= \sqrt{ \frac{2 \sqrt{3}}{5}}\]
|
|
\[\frac{n}{2}+ \frac{7}{2}\]
|
|
\[x \rightarrow x+iy\]
|
|
\[z=x^{8}+ix^{9}\]
|
|
\[32x^{6}-48x^{4}+18x^{2}-1\]
|
|
\[x= \tan \theta\]
|
|
\[F_{[p+2]}^{2}=F_{[p+2] \alpha_{1} \ldots \alpha_{p+2}}F_{[p+2]}^{ \alpha_{1} \ldots \alpha_{p+2}}\]
|
|
\[a= \frac{1}{ \sqrt{2}}(A+B)b= \frac{1}{ \sqrt{2}}(A-B)\]
|
|
\[(49 \sqrt{3} \pm \sqrt{5259})/18\]
|
|
\[\frac{e}{ \sqrt{2 \pi}}\]
|
|
\[xdy=a_{2}dxx+b_{2}dyx+c_{2}dxy+d_{2}dyy\]
|
|
\[25 \sqrt[5]{2^{-14}3^{7}}\]
|
|
\[e^{a+1}-e^{a}\]
|
|
\[\Delta \geq 3\]
|
|
\[(a+b+ \ldots+c)^{2} \geq a^{2}+b^{2}+ \ldots+c^{2}\]
|
|
\[u+v+t+ \frac{t^{n+2}}{uv}=0\]
|
|
\[A= \sum_{a}A^{a}t^{a}\]
|
|
\[\frac{1}{c}\]
|
|
\[S_{ab}S_{b}+S_{b}S_{ab}=0\]
|
|
\[\cos z_{0}\]
|
|
\[xdy=qdyx+(q^{2}-1)dxy\]
|
|
\[\sum m^{2}\]
|
|
\[\sum_{i=0}^{n-1}g_{i+1}x^{i}\]
|
|
\[\sin^{2} \alpha\]
|
|
\[\forall m,n \geq 1\]
|
|
\[x \rightarrow x+x^{cl}\]
|
|
\[\lim_{r \rightarrow 0}f(r)= \sqrt{r}\]
|
|
\[x^{n}-ax^{s}+b=0\]
|
|
\[5 \times 5\]
|
|
\[A=A^{x}e_{x}+A^{y}e_{y}\]
|
|
\[L_{ab}=x^{a}p_{b}-x^{b}p_{a}\]
|
|
\[\lim_{r \rightarrow+ \infty}u^{ \prime}v^{ \prime}=+ \infty\]
|
|
\[c= \frac{b-1}{b+1}\]
|
|
\[aba^{-1}b^{-1}\]
|
|
\[\frac{6}{ \sqrt{360}}\]
|
|
\[\sigma \sigma \sigma \sigma\]
|
|
\[y_{2}(x)=t_{3}(x)-t_{2}(x)\]
|
|
\[\frac{5}{4}\]
|
|
\[\frac{899}{528}\]
|
|
\[b \geq \frac{1}{a-1}\]
|
|
\[4(n+1)-3n-n=4\]
|
|
\[|k|^{-1} \sin|k|u\]
|
|
\[\cos(X^{m})\]
|
|
\[2^{22}\]
|
|
\[- \frac{52}{45}\]
|
|
\[n!L_{n}^{(m-n)}(z)=(-z)^{n-m}m!L_{m}^{(n-m)}(z)\]
|
|
\[a(t)= \cos t\]
|
|
\[( \frac{p2^{-p}}{1+p}-1)\]
|
|
\[x_{1}+x_{2}+x_{4}=2x_{3}\]
|
|
\[(1-x)^{1/2} \log(1-x)\]
|
|
\[\frac{n}{ \sqrt{a_{1}b_{1}}}\]
|
|
\[\sum_{x} \Delta_{xy}=0\]
|
|
\[H=p^{2}+i \sin x\]
|
|
\[- \frac{8}{ \sqrt{7}} \leq c_{1} \leq 0\]
|
|
\[HH\]
|
|
\[a=1...7\]
|
|
\[-1.7919\]
|
|
\[v(z)=z^{n+1}-(-1)^{n}z^{-n+1}\]
|
|
\[\lim_{x \rightarrow \infty}f(k,x)e^{-ikx}=1\]
|
|
\[r= \sqrt{y^{a}y^{a}}\]
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.