--- license: cc0-1.0 task_categories: - image-classification - clustering tags: - mnist - digits - computer-vision - machine-learning - matlab dataset_info: features: - name: data dtype: uint8 shape: [784] - name: labels dtype: uint8 splits: - name: train num_bytes: 3170000000 num_examples: 8100000 --- # MNIST8M Dataset (.mat format) ## Dataset Description This repository contains the MNIST8M dataset converted to MATLAB `.h5` format for convenient use in MATLAB environments. The original data is sourced from the LIBSVM datasets page. ### Dataset Summary - **Original Source**: [LIBSVM Multiclass Datasets - MNIST8M](https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html#mnist8m) - **Format Conversion**: Converted from original LibSVM format to MATLAB `.h5` format - **Purpose**: Facilitate clustering and machine learning experiments in MATLAB - **Files**: `MNIST8M_data.h5`, `labels.mat` ### Data Specifications - **Samples**: 8,100,000 (8.1 million) - **Features**: 784 (28×28 pixel images) - **Data Type**: `uint8` - **Value Range**: [0, 255] - **Labels**: 10 classes (digits 0-9) - **Label Type**: `uint8` - **Label Range**: [0, 9] ### Storage Format - `MNIST8M_data`: uint8 matrix of size 8,100,000 × 784 - `labels`: uint8 vector of size 8,100,000 × 1 ### Usage Warning ⚠️ **Memory Considerations**: Loading the entire dataset directly into memory may cause out-of-memory errors on systems with insufficient RAM. The uncompressed data requires approximately 6GB of memory (8.1M × 784 × 1 byte). ### Recommended Usage For systems with limited memory, consider: - Loading data in batches - Using memory-mapped files - Working with data subsets - Converting to single precision when possible ### Source Attribution Original dataset courtesy of: - [LIBSVM Datasets](https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html#mnist8m) - [infinite MNIST](https://leon.bottou.org/projects/infimnist) ### MATLAB Loading Example ``` dataset_name = 'MNIST8M'; % Data path data_file = 'MNIST8M_data.h5'; % Your directory data = h5read(data_file, '/MNIST8M'); data = double(data); % May cause out-of-memory data_info = h5info(data_file); data_size = data_info.Datasets.Dataspace.Size; n_points = data_size(1); % Total number of points n_features = data_size(2); % Number of dimensions ``` ``` >> h5disp('MNIST8M_data.h5'); HDF5 MNIST8M_data.h5 Group '/' Dataset 'MNIST8M' Size: 8100000x784 MaxSize: 8100000x784 Datatype: H5T_STD_U8LE (uint8) ChunkSize: 100000x784 Filters: none FillValue: 0 ```