Update README.md
Browse files
README.md
CHANGED
|
@@ -1,278 +1,302 @@
|
|
| 1 |
-
---
|
| 2 |
-
dataset_info:
|
| 3 |
-
features:
|
| 4 |
-
- name: audio
|
| 5 |
-
dtype: audio
|
| 6 |
-
- name: transcription
|
| 7 |
-
dtype: string
|
| 8 |
-
splits:
|
| 9 |
-
- name: train
|
| 10 |
-
num_bytes: 1110063079
|
| 11 |
-
num_examples: 5000
|
| 12 |
-
- name: validation
|
| 13 |
-
num_bytes: 82102316
|
| 14 |
-
num_examples: 500
|
| 15 |
-
download_size: 1138402984
|
| 16 |
-
dataset_size: 1192165395
|
| 17 |
-
configs:
|
| 18 |
-
- config_name: default
|
| 19 |
-
data_files:
|
| 20 |
-
- split: train
|
| 21 |
-
path: data/train-*
|
| 22 |
-
- split: validation
|
| 23 |
-
path: data/validation-*
|
| 24 |
-
tags:
|
| 25 |
-
- masrispeech
|
| 26 |
-
- egyptian-arabic
|
| 27 |
-
- arabic
|
| 28 |
-
- speech
|
| 29 |
-
- audio
|
| 30 |
-
- asr
|
| 31 |
-
- automatic-speech-recognition
|
| 32 |
-
- speech-to-text
|
| 33 |
-
- stt
|
| 34 |
-
- dialectal-arabic
|
| 35 |
-
- egypt
|
| 36 |
-
- native-speakers
|
| 37 |
-
- spoken-arabic
|
| 38 |
-
- egyptian-dialect
|
| 39 |
-
- arabic-dialect
|
| 40 |
-
- audio-dataset
|
| 41 |
-
- language-resources
|
| 42 |
-
- low-resource-language
|
| 43 |
-
- phonetics
|
| 44 |
-
- speech-corpus
|
| 45 |
-
- voice
|
| 46 |
-
- transcription
|
| 47 |
-
- linguistic-data
|
| 48 |
-
- machine-learning
|
| 49 |
-
- natural-language-processing
|
| 50 |
-
- nlp
|
| 51 |
-
- huggingface
|
| 52 |
-
- open-dataset
|
| 53 |
-
- labeled-data
|
| 54 |
-
task_categories:
|
| 55 |
-
- automatic-speech-recognition
|
| 56 |
-
- audio-classification
|
| 57 |
-
- audio-to-audio
|
| 58 |
-
language:
|
| 59 |
-
- arz
|
| 60 |
-
- ar
|
| 61 |
-
pretty_name: MasriSpeech-ASR-Finetuning
|
| 62 |
-
---
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
# ๐ฃ๏ธ MasriSpeech-ASR-Finetuning: Egyptian Arabic Speech Fine-Tuning Dataset
|
| 66 |
-
|
| 67 |
-
[](https://opensource.org/licenses/Apache-2.0)
|
| 68 |
-
[](https://huggingface.co/collections/NightPrince/masrispeech-dataset-68594e59e46fd12c723f1544)
|
| 69 |
-
|
| 70 |
-
<p align="center">
|
| 71 |
-
<img src="https://
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
>
|
| 82 |
-
> -
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
|
| 91 |
-
|
| 92 |
-
| **Total
|
| 93 |
-
| **
|
| 94 |
-
| **
|
| 95 |
-
| **
|
| 96 |
-
| **
|
| 97 |
-
| **
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
features: ['audio', 'transcription'],
|
| 110 |
-
num_rows:
|
| 111 |
-
})
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
- **
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
#
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
#
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
#
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
```
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
##
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
dataset_info:
|
| 3 |
+
features:
|
| 4 |
+
- name: audio
|
| 5 |
+
dtype: audio
|
| 6 |
+
- name: transcription
|
| 7 |
+
dtype: string
|
| 8 |
+
splits:
|
| 9 |
+
- name: train
|
| 10 |
+
num_bytes: 1110063079
|
| 11 |
+
num_examples: 5000
|
| 12 |
+
- name: validation
|
| 13 |
+
num_bytes: 82102316
|
| 14 |
+
num_examples: 500
|
| 15 |
+
download_size: 1138402984
|
| 16 |
+
dataset_size: 1192165395
|
| 17 |
+
configs:
|
| 18 |
+
- config_name: default
|
| 19 |
+
data_files:
|
| 20 |
+
- split: train
|
| 21 |
+
path: data/train-*
|
| 22 |
+
- split: validation
|
| 23 |
+
path: data/validation-*
|
| 24 |
+
tags:
|
| 25 |
+
- masrispeech
|
| 26 |
+
- egyptian-arabic
|
| 27 |
+
- arabic
|
| 28 |
+
- speech
|
| 29 |
+
- audio
|
| 30 |
+
- asr
|
| 31 |
+
- automatic-speech-recognition
|
| 32 |
+
- speech-to-text
|
| 33 |
+
- stt
|
| 34 |
+
- dialectal-arabic
|
| 35 |
+
- egypt
|
| 36 |
+
- native-speakers
|
| 37 |
+
- spoken-arabic
|
| 38 |
+
- egyptian-dialect
|
| 39 |
+
- arabic-dialect
|
| 40 |
+
- audio-dataset
|
| 41 |
+
- language-resources
|
| 42 |
+
- low-resource-language
|
| 43 |
+
- phonetics
|
| 44 |
+
- speech-corpus
|
| 45 |
+
- voice
|
| 46 |
+
- transcription
|
| 47 |
+
- linguistic-data
|
| 48 |
+
- machine-learning
|
| 49 |
+
- natural-language-processing
|
| 50 |
+
- nlp
|
| 51 |
+
- huggingface
|
| 52 |
+
- open-dataset
|
| 53 |
+
- labeled-data
|
| 54 |
+
task_categories:
|
| 55 |
+
- automatic-speech-recognition
|
| 56 |
+
- audio-classification
|
| 57 |
+
- audio-to-audio
|
| 58 |
+
language:
|
| 59 |
+
- arz
|
| 60 |
+
- ar
|
| 61 |
+
pretty_name: MasriSpeech-ASR-Finetuning
|
| 62 |
+
---
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
# ๐ฃ๏ธ MasriSpeech-ASR-Finetuning: Egyptian Arabic Speech Fine-Tuning Dataset
|
| 66 |
+
|
| 67 |
+
[](https://opensource.org/licenses/Apache-2.0)
|
| 68 |
+
[](https://huggingface.co/collections/NightPrince/masrispeech-dataset-68594e59e46fd12c723f1544)
|
| 69 |
+
|
| 70 |
+
<p align="center">
|
| 71 |
+
<img src="https://github.com/NightPrinceY/Helmet-V8/blob/main/MasriSpeech.png?raw=true"
|
| 72 |
+
alt="MasriSpeech-Full Dataset Overview"
|
| 73 |
+
width="600"
|
| 74 |
+
height="750"
|
| 75 |
+
style="border-radius: 8px; box-shadow: 0 4px 12px rgba(0,0,0,0.1); object-fit: cover; object-position: top;">
|
| 76 |
+
</p>
|
| 77 |
+
|
| 78 |
+
## ๐ Overview
|
| 79 |
+
**MasriSpeech-ASR-Finetuning** is a specialized subset of the MasriSpeech dataset, designed for fine-tuning Automatic Speech Recognition (ASR) models for Egyptian Arabic. This dataset contains 5,500 professionally annotated audio samples totaling over 100 hours of natural Egyptian Arabic speech.
|
| 80 |
+
|
| 81 |
+
> ๐ก **Key Features**:
|
| 82 |
+
> - High-quality 16kHz speech recordings
|
| 83 |
+
> - Natural conversational Egyptian Arabic
|
| 84 |
+
> - Speaker-balanced train/validation splits
|
| 85 |
+
> - Comprehensive linguistic coverage
|
| 86 |
+
> - Apache 2.0 license
|
| 87 |
+
|
| 88 |
+
## ๐ Dataset Summary
|
| 89 |
+
|
| 90 |
+
| Feature | Value |
|
| 91 |
+
|--------------------------|---------------------------|
|
| 92 |
+
| **Total Samples** | 5,500 |
|
| 93 |
+
| **Train Samples** | 5,000 |
|
| 94 |
+
| **Validation Samples** | 500 |
|
| 95 |
+
| **Sampling Rate** | 16 kHz |
|
| 96 |
+
| **Total Duration** | ~100 hours |
|
| 97 |
+
| **Languages** | Egyptian Arabic (arz), Arabic (ar) |
|
| 98 |
+
| **Format** | Parquet |
|
| 99 |
+
| **Dataset Size** | 1.19 GB |
|
| 100 |
+
| **Download Size** | 1.13 GB |
|
| 101 |
+
| **Annotations** | Transcripts |
|
| 102 |
+
|
| 103 |
+
## ๐งฑ Dataset Structure
|
| 104 |
+
The dataset follows Hugging Face `datasets` format with two splits:
|
| 105 |
+
|
| 106 |
+
```python
|
| 107 |
+
DatasetDict({
|
| 108 |
+
train: Dataset({
|
| 109 |
+
features: ['audio', 'transcription'],
|
| 110 |
+
num_rows: 5000
|
| 111 |
+
})
|
| 112 |
+
validation: Dataset({
|
| 113 |
+
features: ['audio', 'transcription'],
|
| 114 |
+
num_rows: 500
|
| 115 |
+
})
|
| 116 |
+
})
|
| 117 |
+
```
|
| 118 |
+
## Data Fields
|
| 119 |
+
|
| 120 |
+
- **audio**: Audio feature object containing:
|
| 121 |
+
- `Array`: Raw speech waveform (1D float array)
|
| 122 |
+
- `Path`: Relative audio path
|
| 123 |
+
- `Sampling_rate`: 16,000 Hz
|
| 124 |
+
- **transcription**: string with Egyptian Arabic transcription
|
| 125 |
+
|
| 126 |
+
## ๐ Data Statistics
|
| 127 |
+
|
| 128 |
+
### Split Distribution
|
| 129 |
+
|
| 130 |
+
| Split | Examples | Size (GB) | Avg. Words | Empty | Non-Arabic |
|
| 131 |
+
|--------------|----------|-----------|------------|-------|------------|
|
| 132 |
+
| **Train** | 5,000 | 1.11 | 13.34 | 0 | 0 |
|
| 133 |
+
| **Validation**| 500 | 0.08 | 9.60 | 0 | 0 |
|
| 134 |
+
|
| 135 |
+
### Linguistic Analysis
|
| 136 |
+
|
| 137 |
+
| Feature | Train Set | Validation Set |
|
| 138 |
+
|-----------------|---------------------------|----------------------------|
|
| 139 |
+
| **Top Words** | ูู (2,025), ู (1,698) | ูู (52), ุฃูุง (41) |
|
| 140 |
+
| **Top Bigrams** | (ุฅู, ุฃูุง) (130) | (ุดุงุก, ุงููู) (6) |
|
| 141 |
+
| **Vocab Size** | 3,845 | 789 |
|
| 142 |
+
| **Unique Speakers** | 114 | 10 |
|
| 143 |
+
|
| 144 |
+
<p align="center">
|
| 145 |
+
<img src="https://github.com/NightPrinceY/Helmet-V8/blob/main/train_wordcount_hist.png?raw=true" alt="Train Distribution" width="45%">
|
| 146 |
+
<img src="https://github.com/NightPrinceY/Helmet-V8/blob/main/adapt_wordcount_hist.png?raw=true" alt="Validation Distribution" width="45%">
|
| 147 |
+
<br><em>Word Count Distributions (Left: Train, Right: Validation)</em>
|
| 148 |
+
</p>
|
| 149 |
+
|
| 150 |
+
|
| 151 |
+
|
| 152 |
+
## How to Use ? ๐งโ๐ป
|
| 153 |
+
|
| 154 |
+
### Loading with Hugging Face
|
| 155 |
+
```python
|
| 156 |
+
from datasets import load_dataset
|
| 157 |
+
import IPython.display as ipd
|
| 158 |
+
|
| 159 |
+
# Load dataset (streaming recommended for large datasets)
|
| 160 |
+
ds = load_dataset('NightPrince/MasriSpeech-ASR-Finetuning',
|
| 161 |
+
split='train',
|
| 162 |
+
streaming=True)
|
| 163 |
+
|
| 164 |
+
# Get first sample
|
| 165 |
+
sample = next(iter(ds))
|
| 166 |
+
print(f"Transcript: {sample['transcription']}")
|
| 167 |
+
|
| 168 |
+
# Play audio
|
| 169 |
+
ipd.Audio(sample['audio']['array'],
|
| 170 |
+
rate=sample['audio']['sampling_rate'])
|
| 171 |
+
```
|
| 172 |
+
|
| 173 |
+
### Preprocessing the Dataset
|
| 174 |
+
```python
|
| 175 |
+
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
|
| 176 |
+
from datasets import load_dataset
|
| 177 |
+
import torch
|
| 178 |
+
model_name = "facebook/wav2vec2-base-960h" # Spanish example
|
| 179 |
+
# or "facebook/wav2vec2-large-xlsr-53-en" for English
|
| 180 |
+
processor = Wav2Vec2Processor.from_pretrained(model_name)
|
| 181 |
+
model = Wav2Vec2ForCTC.from_pretrained(model_name)
|
| 182 |
+
|
| 183 |
+
def prepare_dataset(batch):
|
| 184 |
+
audio = batch["audio"]
|
| 185 |
+
|
| 186 |
+
# Extract audio array and sampling rate
|
| 187 |
+
audio_array = audio["array"]
|
| 188 |
+
sampling_rate = audio["sampling_rate"]
|
| 189 |
+
|
| 190 |
+
# Process audio using feature extractor only
|
| 191 |
+
inputs = processor.feature_extractor(
|
| 192 |
+
audio_array,
|
| 193 |
+
sampling_rate=sampling_rate,
|
| 194 |
+
return_tensors="pt"
|
| 195 |
+
)
|
| 196 |
+
|
| 197 |
+
batch["input_values"] = inputs.input_values[0]
|
| 198 |
+
|
| 199 |
+
# Process transcription using tokenizer only
|
| 200 |
+
labels = processor.tokenizer(
|
| 201 |
+
batch["transcription"],
|
| 202 |
+
return_tensors="pt"
|
| 203 |
+
)
|
| 204 |
+
|
| 205 |
+
batch["labels"] = labels["input_ids"][0]
|
| 206 |
+
|
| 207 |
+
return batch
|
| 208 |
+
|
| 209 |
+
# Apply preprocessing to the entire dataset
|
| 210 |
+
print("Processing entire dataset...")
|
| 211 |
+
dataset = ds.map(prepare_dataset, remove_columns=["audio", "transcription"])
|
| 212 |
+
```
|
| 213 |
+
|
| 214 |
+
### Fine-Tuning an ASR Model
|
| 215 |
+
```python
|
| 216 |
+
from transformers import AutoModelForCTC, TrainingArguments, Trainer
|
| 217 |
+
|
| 218 |
+
# Load pre-trained model
|
| 219 |
+
model = AutoModelForCTC.from_pretrained("facebook/wav2vec2-base-960h")
|
| 220 |
+
|
| 221 |
+
# Define training arguments
|
| 222 |
+
training_args = TrainingArguments(
|
| 223 |
+
output_dir="./results",
|
| 224 |
+
evaluation_strategy="epoch",
|
| 225 |
+
learning_rate=2e-5,
|
| 226 |
+
per_device_train_batch_size=16,
|
| 227 |
+
num_train_epochs=3,
|
| 228 |
+
save_steps=10,
|
| 229 |
+
save_total_limit=2,
|
| 230 |
+
logging_dir="./logs",
|
| 231 |
+
logging_steps=10,
|
| 232 |
+
)
|
| 233 |
+
|
| 234 |
+
# Initialize Trainer
|
| 235 |
+
trainer = Trainer(
|
| 236 |
+
model=model,
|
| 237 |
+
args=training_args,
|
| 238 |
+
train_dataset=dataset,
|
| 239 |
+
eval_dataset=dataset,
|
| 240 |
+
)
|
| 241 |
+
|
| 242 |
+
# Train the model
|
| 243 |
+
trainer.train()
|
| 244 |
+
```
|
| 245 |
+
|
| 246 |
+
### Evaluating the Model
|
| 247 |
+
```python
|
| 248 |
+
# Evaluate the model
|
| 249 |
+
eval_results = trainer.evaluate()
|
| 250 |
+
print("Evaluation Results:", eval_results)
|
| 251 |
+
```
|
| 252 |
+
|
| 253 |
+
### Exporting the Model
|
| 254 |
+
```python
|
| 255 |
+
# Save the fine-tuned model
|
| 256 |
+
model.save_pretrained("./fine_tuned_model")
|
| 257 |
+
processor.save_pretrained("./fine_tuned_model")
|
| 258 |
+
```
|
| 259 |
+
|
| 260 |
+
## ๐ Citation
|
| 261 |
+
If you use **MasriSpeech-ASR-Finetuning** in your research or work, please cite it as follows:
|
| 262 |
+
|
| 263 |
+
```
|
| 264 |
+
@dataset{masrispeech_asr_finetuning,
|
| 265 |
+
author = {Yahya Muhammad Alnwsany},
|
| 266 |
+
title = {MasriSpeech-ASR-Finetuning: Egyptian Arabic Speech Fine-Tuning Dataset},
|
| 267 |
+
year = {2025},
|
| 268 |
+
publisher = {Hugging Face},
|
| 269 |
+
url = {https://huggingface.co/collections/NightPrince/masrispeech-dataset-68594e59e46fd12c723f1544}
|
| 270 |
+
}
|
| 271 |
+
```
|
| 272 |
+
|
| 273 |
+
## ๐ Licensing
|
| 274 |
+
This dataset is released under the **Apache 2.0 License**. You are free to use, modify, and distribute the dataset, provided you comply with the terms of the license. For more details, see the [LICENSE](https://opensource.org/licenses/Apache-2.0).
|
| 275 |
+
|
| 276 |
+
## ๐ Acknowledgments
|
| 277 |
+
We would like to thank the following for their contributions and support:
|
| 278 |
+
- **Annotators**: For their meticulous work in creating high-quality transcriptions.
|
| 279 |
+
- **Hugging Face**: For providing tools and hosting the dataset.
|
| 280 |
+
- **Open-Source Community**: For their continuous support and feedback.
|
| 281 |
+
|
| 282 |
+
## ๐ก Use Cases
|
| 283 |
+
**MasriSpeech-ASR-Finetuning** can be used in various applications, including:
|
| 284 |
+
- Fine-tuning Automatic Speech Recognition (ASR) models for Egyptian Arabic.
|
| 285 |
+
- Dialectal Arabic linguistic research.
|
| 286 |
+
- Speech synthesis and voice cloning.
|
| 287 |
+
- Training and benchmarking machine learning models for low-resource languages.
|
| 288 |
+
|
| 289 |
+
## ๐ค Contributing
|
| 290 |
+
We welcome contributions to improve **MasriSpeech-ASR-Finetuning**. If you have suggestions, find issues, or want to add new features, please:
|
| 291 |
+
1. Fork the repository.
|
| 292 |
+
2. Create a new branch for your changes.
|
| 293 |
+
3. Submit a pull request with a detailed description of your changes.
|
| 294 |
+
|
| 295 |
+
For questions or feedback, feel free to contact the maintainer.
|
| 296 |
+
|
| 297 |
+
## ๐ Changelog
|
| 298 |
+
### [1.0.0] - 2025-08-02
|
| 299 |
+
- Initial release of **MasriSpeech-ASR-Finetuning**.
|
| 300 |
+
- Includes 5,500 audio samples with transcriptions.
|
| 301 |
+
- Train/validation splits provided.
|
| 302 |
+
- Dataset hosted on Hugging Face.
|