File size: 4,938 Bytes
4b3d19b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9dafe14
4b3d19b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
---
configs:
  - config_name: all
    data_files: "*/*.tar"
    default: true
  - config_name: 3blue1brown
    data_files: 3blue1brown/*.tar
  - config_name: boxofficemoviesscenes
    data_files: boxofficemoviesscenes/*.tar
  - config_name: business
    data_files: business/*.tar
  - config_name: markrober
    data_files: markrober/*.tar
  - config_name: marvel
    data_files: marvel/*.tar
  - config_name: mitocw
    data_files: mitocw/*.tar
  - config_name: mkbhd
    data_files: mkbhd/*.tar
  - config_name: msftmechanics
    data_files: msftmechanics/*.tar
  - config_name: neoexplains
    data_files: neoexplains/*.tar
  - config_name: nvidia
    data_files: nvidia/*.tar
  - config_name: quantasciencechannel
    data_files: quantasciencechannel/*.tar
  - config_name: teded
    data_files: teded/*.tar
  - config_name: theinfographicsshow
    data_files: theinfographicsshow/*.tar
  - config_name: twominutepapers
    data_files: twominutepapers/*.tar
  - config_name: veritasium
    data_files: veritasium/*.tar
license: mit
task_categories:
  - automatic-speech-recognition
language:
  - en
size_categories:
  - 100K<n<1M
---

# English Audio Dataset from YouTube

This dataset contains English audio segments and **creator uploaded** transcripts (likely higher quality) extracted from various YouTube channels, along with corresponding transcript metadata. The data is intended for training automatic speech recognition (ASR) models.

## Data Source and Processing

The data was obtained through the following process:

1.  **Download:** Audio (`.m4a`) and available English subtitles (`.srt` for `en`, `en.j3PyPqV-e1s`) were downloaded from selected YouTube channels. This raw data, along with video metadata (`metadata.csv`), is stored initially in a `data/{channel_id}/` directory structure.
2.  **Segmentation:** The raw audio files were segmented based on the timing information in the `.srt` files.
    - Audio files are splitted by SRT segments and then combined to a maximum duration less than but close to 30 seconds per group for Whisper.
    - The corresponding audio portions for each group are extracted using `ffmpeg` and saved as `.mp3` files at a 16000 Hz sample rate.
    - Metadata for each segment, including channel/video info and the text/timing of subtitles within the segment, is saved in a corresponding `.json` file.

## Intermediate Dataset Structure (`dataset` directory)

Before being packaged into TAR archives for Hugging Face, the segmented data resides in the `dataset` directory with the following structure:

```
dataset/
└── {channel_id}/             # Directory named after the YouTube channel ID
    └── {video_id}/           # Directory named after the YouTube video ID
        β”œβ”€β”€ {video_id}_{group_name}.mp3  # Segmented audio file
        β”œβ”€β”€ {video_id}_{group_name}.json # Corresponding metadata file
        └── ...
```

- **`{channel_id}`:** The ID of the YouTube channel (e.g., `greenbeanmediaofficial`).
- **`{video_id}`:** The unique identifier for the YouTube video.
- **`{group_name}`:** Represents the subtitles included in the segment. It's either the index of the first subtitle (e.g., `1`) if the group contains only one, or a range indicating the first and last subtitle indices (e.g., `1-5`) if the group contains multiple subtitles.

## Dataset Summary

The dataset comprises audio from the following channels:

```
Channel               |       Videos |      Duration | Percent
--------------------- | ------------ | ------------- | -------
3blue1brown           |   136 videos |   37.82 hours |   1.08%
boxofficemoviesscenes |  1626 videos |  153.06 hours |   4.38%
business              |   887 videos |  187.80 hours |   5.38%
markrober             |    97 videos |   21.77 hours |   0.62%
marvel                |   763 videos |   35.17 hours |   1.01%
mitocw                |  2844 videos | 1738.07 hours |  49.79%
mkbhd                 |   114 videos |   27.61 hours |   0.79%
msftmechanics         |   732 videos |  131.52 hours |   3.77%
neoexplains           |    35 videos |    8.06 hours |   0.23%
nvidia                |   134 videos |   19.42 hours |   0.56%
quantasciencechannel  |    93 videos |   13.60 hours |   0.39%
teded                 |  1768 videos |  145.53 hours |   4.17%
theinfographicsshow   |  3402 videos |  827.06 hours |  23.69%
twominutepapers       |   871 videos |   79.34 hours |   2.27%
veritasium            |   291 videos |   64.96 hours |   1.86%
--------------------- | ------------ | ------------- | -------
Total                 | 13793 videos | 3490.79 hours | 100.00%
```

## Loading the Data

You can load the data using the Hugging Face `datasets` library:

```python
import os

from datasets import load_dataset

ds = load_dataset(
    "OrcinusOrca/YouTube-English",
    "all",  # or channel_id as config
    split="train",
    streaming=False,  # or True
    num_proc=os.cpu_count(),
)
```