RikoteMaster commited on
Commit
735a269
·
verified ·
1 Parent(s): a1ab020

Add dataset card

Browse files
Files changed (1) hide show
  1. README.md +63 -30
README.md CHANGED
@@ -1,32 +1,65 @@
1
  ---
2
- dataset_info:
3
- features:
4
- - name: question
5
- dtype: string
6
- - name: choices
7
- sequence: string
8
- - name: answer_index
9
- dtype: int64
10
- - name: answer_text
11
- dtype: string
12
- - name: source
13
- dtype: string
14
- - name: explanation
15
- dtype: string
16
- splits:
17
- - name: train
18
- num_bytes: 133475088
19
- num_examples: 182822
20
- - name: validation
21
- num_bytes: 2255614
22
- num_examples: 4183
23
- download_size: 84134828
24
- dataset_size: 135730702
25
- configs:
26
- - config_name: default
27
- data_files:
28
- - split: train
29
- path: data/train-*
30
- - split: validation
31
- path: data/validation-*
32
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ license: apache-2.0
3
+ task_categories:
4
+ - question-answering
5
+ - multiple-choice
6
+ language:
7
+ - en
8
+ tags:
9
+ - medical
10
+ - healthcare
11
+ - mcqa
12
+ - entrance-exam
13
+ size_categories:
14
+ - 100K<n<1M
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15
  ---
16
+
17
+ # MedMCQA MCQA Dataset
18
+
19
+ This dataset contains the MedMCQA dataset converted to Multiple Choice Question Answering (MCQA) format.
20
+
21
+ ## Dataset Description
22
+
23
+ MedMCQA is a large-scale, Multiple-Choice Question Answering (MCQA) dataset designed to address real-world medical entrance exam questions. It covers various medical subjects and topics, making it ideal for evaluating AI systems on medical knowledge.
24
+
25
+ ## Dataset Structure
26
+
27
+ Each example contains:
28
+ - `question`: The medical question
29
+ - `choices`: List of 4 possible answers (A, B, C, D)
30
+ - `answer_index`: Index of the correct answer (0-3)
31
+ - `answer_text`: Text of the correct answer
32
+ - `source`: Dataset source ("medmcqa")
33
+ - `explanation`: Detailed explanation including subject and topic information
34
+
35
+ ## Data Splits
36
+
37
+ - Train: 182822 examples
38
+ - Validation: 4183 examples (Test split skipped - no labels available)
39
+
40
+ ## Usage
41
+
42
+ ```python
43
+ from datasets import load_dataset
44
+
45
+ dataset = load_dataset("RikoteMaster/medmcqa-mcqa")
46
+ ```
47
+
48
+ ## Original Dataset
49
+
50
+ This dataset is based on the MedMCQA dataset:
51
+ - Paper: https://arxiv.org/abs/2203.14371
52
+ - Original repository: https://huggingface.co/datasets/openlifescienceai/medmcqa
53
+
54
+ ## Citation
55
+
56
+ ```bibtex
57
+ @misc{pal2022medmcqa,
58
+ title={MedMCQA : A Large-scale Multi-Subject Multi-Choice Dataset for Medical domain Question Answering},
59
+ author={Ankit Pal and Logesh Kumar Umapathi and Malaikannan Sankarasubbu},
60
+ year={2022},
61
+ eprint={2203.14371},
62
+ archivePrefix={arXiv},
63
+ primaryClass={cs.CL}
64
+ }
65
+ ```