Datasets:

Modalities:
Text
Formats:
parquet
Languages:
Spanish
ArXiv:
Libraries:
Datasets
Dask
License:
nielsr HF Staff commited on
Commit
1c216fb
·
verified ·
1 Parent(s): fd71075

Update task category to `image-text-to-text`, add link to paper and Github repo and ocr tag

Browse files

This PR updates the task category to `image-text-to-text` to reflect the multimodal nature of the dataset. It also adds a link to the paper on the Hugging Face Hub, a link to the Github repository, and the "ocr" tag.

Files changed (1) hide show
  1. README.md +27 -26
README.md CHANGED
@@ -1,43 +1,44 @@
1
  ---
 
 
 
 
 
 
 
 
2
  dataset_info:
3
  features:
4
- - name: image
5
- dtype: string
6
- - name: text
7
- dtype: string
8
  splits:
9
- - name: train
10
- num_bytes: 11860671915
11
- num_examples: 13320
12
  download_size: 11661151472
13
  dataset_size: 11860671915
14
  configs:
15
- - config_name: default
16
- data_files:
17
- - split: train
18
- path: data/train-*
19
- license: apache-2.0
20
- language:
21
- - es
22
  tags:
23
  - finance
24
- pretty_name: SpanishOCR
25
- size_categories:
26
- - 10K<n<100K
27
- task_categories:
28
- - image-to-text
29
  ---
30
 
31
  ----------------------------------------------------------------
32
  # Dataset Card for SpanishOCR Dataset
33
 
 
34
 
35
- ### Dataset Summary
36
- The SpanishOCR dataset contains images derived from regulatory documents from Peru government in pdf format. This dataset is used for benchmarkingg and evaluating Large Language Models ability on converting unstructured dcuments, such as pdfs and images, into machine readable format, particularly in finance domain, where the conversion task is more complex and valuable.
37
 
38
  ### Supported Tasks
39
 
40
- - **Task:** Image-to-Text
41
  - **Evaluation Metrics:** ROUGE-1
42
 
43
  ### Languages
@@ -58,7 +59,7 @@ Each instance in the SpanishOCR dataset comprises 2 fields:
58
  ## Dataset Creation
59
 
60
  ### Curation Rationale
61
- The SpanishOCR dataset was curated to support research and development on information extraction techniques and layout retain ability for unstructured documents in Spanish. By providing real-world regulatory documents in unstructured format with ground truth, the dataset seeks to address challenges in extracting informat as well as layouts and convert into machine-readable format.
62
 
63
  ### Source Data
64
  #### Initial Data Collection and Normalization
@@ -96,6 +97,7 @@ This dataset enables AI models to extract structured information from scanned fi
96
  - While the dataset covers regulatory documents, it may lack sufficient variety in layout styles (e.g., handwritten notes, non-standard financial forms, embedded charts), which could limit a model’s ability to generalize to less structured or unconventional financial documents.
97
 
98
  ## Additional Information
 
99
 
100
  ### Dataset Curators
101
  - Yueru He
@@ -117,7 +119,6 @@ If you use this dataset, please cite:
117
  year={2025},
118
  eprint={2506.14028},
119
  archivePrefix={arXiv},
120
- primaryClass={cs.CL},
121
  url={https://arxiv.org/abs/2506.14028},
122
- }
123
- ```
 
1
  ---
2
+ language:
3
+ - es
4
+ license: apache-2.0
5
+ size_categories:
6
+ - 10K<n<100K
7
+ task_categories:
8
+ - image-text-to-text
9
+ pretty_name: SpanishOCR
10
  dataset_info:
11
  features:
12
+ - name: image
13
+ dtype: string
14
+ - name: text
15
+ dtype: string
16
  splits:
17
+ - name: train
18
+ num_bytes: 11860671915
19
+ num_examples: 13320
20
  download_size: 11661151472
21
  dataset_size: 11860671915
22
  configs:
23
+ - config_name: default
24
+ data_files:
25
+ - split: train
26
+ path: data/train-*
 
 
 
27
  tags:
28
  - finance
29
+ - ocr
 
 
 
 
30
  ---
31
 
32
  ----------------------------------------------------------------
33
  # Dataset Card for SpanishOCR Dataset
34
 
35
+ [Paper](https://huggingface.co/papers/2506.14028)
36
 
37
+ The SpanishOCR dataset contains images derived from regulatory documents from Peru government in pdf format. This dataset is used for benchmarking and evaluating Large Language Models ability on converting unstructured documents, such as pdfs and images, into machine readable format, particularly in the finance domain, where the conversion task is more complex and valuable.
 
38
 
39
  ### Supported Tasks
40
 
41
+ - **Task:** Image-Text-to-Text (OCR, Financial QA)
42
  - **Evaluation Metrics:** ROUGE-1
43
 
44
  ### Languages
 
59
  ## Dataset Creation
60
 
61
  ### Curation Rationale
62
+ The SpanishOCR dataset was curated to support research and development on information extraction techniques and layout retain ability for unstructured documents in Spanish. By providing real-world regulatory documents in unstructured format with ground truth, the dataset seeks to address challenges in extracting information as well as layouts and convert into machine-readable format.
63
 
64
  ### Source Data
65
  #### Initial Data Collection and Normalization
 
97
  - While the dataset covers regulatory documents, it may lack sufficient variety in layout styles (e.g., handwritten notes, non-standard financial forms, embedded charts), which could limit a model’s ability to generalize to less structured or unconventional financial documents.
98
 
99
  ## Additional Information
100
+ [Code](https://github.com/sunnymouse2022/FinBen)
101
 
102
  ### Dataset Curators
103
  - Yueru He
 
119
  year={2025},
120
  eprint={2506.14028},
121
  archivePrefix={arXiv},
122
+ primaryClass={cs.CL},\
123
  url={https://arxiv.org/abs/2506.14028},
124
+ }