Datasets:
Tasks:
Token Classification
Sub-tasks:
named-entity-recognition
Languages:
Finnish
Size:
10K<n<100K
License:
Update files from the datasets library (from 1.16.0)
Browse filesRelease notes: https://github.com/huggingface/datasets/releases/tag/1.16.0
- README.md +1 -0
- turku_ner_corpus.py +39 -38
README.md
CHANGED
|
@@ -1,4 +1,5 @@
|
|
| 1 |
---
|
|
|
|
| 2 |
annotations_creators:
|
| 3 |
- expert-generated
|
| 4 |
language_creators:
|
|
|
|
| 1 |
---
|
| 2 |
+
pretty_name: Turku NER corpus
|
| 3 |
annotations_creators:
|
| 4 |
- expert-generated
|
| 5 |
language_creators:
|
turku_ner_corpus.py
CHANGED
|
@@ -14,7 +14,6 @@
|
|
| 14 |
# limitations under the License.
|
| 15 |
|
| 16 |
# Lint as: python3
|
| 17 |
-
import os
|
| 18 |
|
| 19 |
import datasets
|
| 20 |
|
|
@@ -73,47 +72,63 @@ class TurkuNERCorpus(datasets.GeneratorBasedBuilder):
|
|
| 73 |
)
|
| 74 |
|
| 75 |
def _split_generators(self, dl_manager):
|
| 76 |
-
|
| 77 |
return [
|
| 78 |
datasets.SplitGenerator(
|
| 79 |
name=datasets.Split.TRAIN,
|
| 80 |
-
gen_kwargs={"
|
| 81 |
),
|
| 82 |
datasets.SplitGenerator(
|
| 83 |
name=datasets.Split.VALIDATION,
|
| 84 |
-
gen_kwargs={"
|
| 85 |
),
|
| 86 |
datasets.SplitGenerator(
|
| 87 |
name=datasets.Split.TEST,
|
| 88 |
-
gen_kwargs={"
|
| 89 |
),
|
| 90 |
]
|
| 91 |
|
| 92 |
-
def _generate_examples(self,
|
| 93 |
if data_type == "train":
|
| 94 |
-
data_path =
|
| 95 |
elif data_type == "valid":
|
| 96 |
-
data_path =
|
| 97 |
elif data_type == "test":
|
| 98 |
-
data_path =
|
| 99 |
else:
|
| 100 |
raise Exception("data_type not understood")
|
| 101 |
|
| 102 |
sentence_counter = 0
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
row
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 117 |
sentence = (
|
| 118 |
sentence_counter,
|
| 119 |
{
|
|
@@ -122,19 +137,5 @@ class TurkuNERCorpus(datasets.GeneratorBasedBuilder):
|
|
| 122 |
"ner_tags": current_labels,
|
| 123 |
},
|
| 124 |
)
|
| 125 |
-
sentence_counter += 1
|
| 126 |
-
current_words = []
|
| 127 |
-
current_labels = []
|
| 128 |
yield sentence
|
| 129 |
-
|
| 130 |
-
# if something remains:
|
| 131 |
-
if current_words:
|
| 132 |
-
sentence = (
|
| 133 |
-
sentence_counter,
|
| 134 |
-
{
|
| 135 |
-
"id": str(sentence_counter),
|
| 136 |
-
"tokens": current_words,
|
| 137 |
-
"ner_tags": current_labels,
|
| 138 |
-
},
|
| 139 |
-
)
|
| 140 |
-
yield sentence
|
|
|
|
| 14 |
# limitations under the License.
|
| 15 |
|
| 16 |
# Lint as: python3
|
|
|
|
| 17 |
|
| 18 |
import datasets
|
| 19 |
|
|
|
|
| 72 |
)
|
| 73 |
|
| 74 |
def _split_generators(self, dl_manager):
|
| 75 |
+
archive = dl_manager.download(_URL)
|
| 76 |
return [
|
| 77 |
datasets.SplitGenerator(
|
| 78 |
name=datasets.Split.TRAIN,
|
| 79 |
+
gen_kwargs={"files": dl_manager.iter_archive(archive), "data_type": "train"},
|
| 80 |
),
|
| 81 |
datasets.SplitGenerator(
|
| 82 |
name=datasets.Split.VALIDATION,
|
| 83 |
+
gen_kwargs={"files": dl_manager.iter_archive(archive), "data_type": "valid"},
|
| 84 |
),
|
| 85 |
datasets.SplitGenerator(
|
| 86 |
name=datasets.Split.TEST,
|
| 87 |
+
gen_kwargs={"files": dl_manager.iter_archive(archive), "data_type": "test"},
|
| 88 |
),
|
| 89 |
]
|
| 90 |
|
| 91 |
+
def _generate_examples(self, files, data_type):
|
| 92 |
if data_type == "train":
|
| 93 |
+
data_path = "turku-ner-corpus-1.0/data/conll/train.tsv"
|
| 94 |
elif data_type == "valid":
|
| 95 |
+
data_path = "turku-ner-corpus-1.0/data/conll/dev.tsv"
|
| 96 |
elif data_type == "test":
|
| 97 |
+
data_path = "turku-ner-corpus-1.0/data/conll/test.tsv"
|
| 98 |
else:
|
| 99 |
raise Exception("data_type not understood")
|
| 100 |
|
| 101 |
sentence_counter = 0
|
| 102 |
+
for path, f in files:
|
| 103 |
+
if path == data_path:
|
| 104 |
+
current_words = []
|
| 105 |
+
current_labels = []
|
| 106 |
+
for row in f:
|
| 107 |
+
row = row.decode("utf-8").rstrip()
|
| 108 |
+
row_split = row.split("\t")
|
| 109 |
+
if len(row_split) == 2:
|
| 110 |
+
token, label = row_split
|
| 111 |
+
current_words.append(token)
|
| 112 |
+
current_labels.append(label)
|
| 113 |
+
else:
|
| 114 |
+
if not current_words:
|
| 115 |
+
continue
|
| 116 |
+
assert len(current_words) == len(current_labels), "word len doesnt match label length"
|
| 117 |
+
sentence = (
|
| 118 |
+
sentence_counter,
|
| 119 |
+
{
|
| 120 |
+
"id": str(sentence_counter),
|
| 121 |
+
"tokens": current_words,
|
| 122 |
+
"ner_tags": current_labels,
|
| 123 |
+
},
|
| 124 |
+
)
|
| 125 |
+
sentence_counter += 1
|
| 126 |
+
current_words = []
|
| 127 |
+
current_labels = []
|
| 128 |
+
yield sentence
|
| 129 |
+
|
| 130 |
+
# if something remains:
|
| 131 |
+
if current_words:
|
| 132 |
sentence = (
|
| 133 |
sentence_counter,
|
| 134 |
{
|
|
|
|
| 137 |
"ner_tags": current_labels,
|
| 138 |
},
|
| 139 |
)
|
|
|
|
|
|
|
|
|
|
| 140 |
yield sentence
|
| 141 |
+
break
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|