[ { "repo_name": "llvm-project", "repo_link": "https://github.com/llvm/llvm-project", "category": "compiler", "github_about_section": "The LLVM Project is a collection of modular and reusable compiler and toolchain technologies.", "homepage_link": "http://llvm.org", "github_topic_closest_fit": "compiler", "contributors_all": 6680, "contributors_2025": 2378, "contributors_2024": 2130, "contributors_2023": 1920 }, { "repo_name": "vllm", "repo_link": "https://github.com/vllm-project/vllm", "category": "inference engine", "github_about_section": "A high-throughput and memory-efficient inference and serving engine for LLMs", "homepage_link": "https://docs.vllm.ai", "github_topic_closest_fit": "inference", "contributors_all": 1885, "contributors_2025": 1369, "contributors_2024": 579, "contributors_2023": 145 }, { "repo_name": "pytorch", "repo_link": "https://github.com/pytorch/pytorch", "category": "machine learning framework", "github_about_section": "Tensors and Dynamic neural networks in Python with strong GPU acceleration", "homepage_link": "https://pytorch.org", "github_topic_closest_fit": "machine-learning", "contributors_all": 5434, "contributors_2025": 1187, "contributors_2024": 1090, "contributors_2023": 1024 }, { "repo_name": "transformers", "repo_link": "https://github.com/huggingface/transformers", "category": "multi-purpose library", "github_about_section": "Transformers: the model-definition framework for state-of-the-art machine learning models in text, vision, audio, and multimodal models, for both inference and training.", "homepage_link": "https://huggingface.co/transformers", "github_topic_closest_fit": "machine-learning", "contributors_all": 3582, "contributors_2025": 860, "contributors_2024": 769, "contributors_2023": 758 }, { "repo_name": "sglang", "repo_link": "https://github.com/sgl-project/sglang", "category": "inference engine", "github_about_section": "SGLang is a fast serving framework for large language models and vision language models.", "homepage_link": "https://docs.sglang.ai", "github_topic_closest_fit": "inference", "contributors_all": 937, "contributors_2025": 796, "contributors_2024": 189, "contributors_2023": 1 }, { "repo_name": "hhvm", "repo_link": "https://github.com/facebook/hhvm", "category": "virtual machine", "github_about_section": "A virtual machine for executing programs written in Hack.", "homepage_link": "https://hhvm.com", "github_topic_closest_fit": "virtual-machine", "contributors_all": 2624, "contributors_2025": 692, "contributors_2024": 648, "contributors_2023": 604 }, { "repo_name": "llama.cpp", "repo_link": "https://github.com/ggml-org/llama.cpp", "category": "inference engine", "github_about_section": "LLM inference in C/C++", "homepage_link": "https://ggml.ai", "github_topic_closest_fit": "inference", "contributors_all": 1374, "contributors_2025": 535, "contributors_2024": 575, "contributors_2023": 461 }, { "repo_name": "kubernetes", "repo_link": "https://github.com/kubernetes/kubernetes", "category": "container orchestration", "github_about_section": "Production-Grade Container Scheduling and Management", "homepage_link": "https://kubernetes.io", "github_topic_closest_fit": "kubernetes", "contributors_all": 5041, "contributors_2025": 509, "contributors_2024": 498, "contributors_2023": 565 }, { "repo_name": "tensorflow", "repo_link": "https://github.com/tensorflow/tensorflow", "category": "machine learning framework", "github_about_section": "An Open Source Machine Learning Framework for Everyone", "homepage_link": "https://tensorflow.org", "github_topic_closest_fit": "machine-learning", "contributors_all": 4618, "contributors_2025": 500, "contributors_2024": 523, "contributors_2023": 630 }, { "repo_name": "verl", "repo_link": "https://github.com/volcengine/verl", "category": "reinforcement learning", "github_about_section": "verl: Volcano Engine Reinforcement Learning for LLMs", "homepage_link": "https://verl.readthedocs.io", "github_topic_closest_fit": "deep-reinforcement-learning", "contributors_all": 462, "contributors_2025": 454, "contributors_2024": 10, "contributors_2023": 0 }, { "repo_name": "rocm-systems", "repo_link": "https://github.com/ROCm/rocm-systems", "category": "multi-purpose library", "github_about_section": "super repo for rocm systems projects", "homepage_link": "https://amd.com/en/products/software/rocm.html", "github_topic_closest_fit": "amd", "contributors_all": 1032, "contributors_2025": 440, "contributors_2024": 323, "contributors_2023": 204 }, { "repo_name": "ray", "repo_link": "https://github.com/ray-project/ray", "category": "multi-purpose library", "github_about_section": "Ray is an AI compute engine. Ray consists of a core distributed runtime and a set of AI Libraries for accelerating ML workloads.", "homepage_link": "https://ray.io", "github_topic_closest_fit": "machine-learning", "contributors_all": 1381, "contributors_2025": 397, "contributors_2024": 223, "contributors_2023": 230 }, { "repo_name": "spark", "repo_link": "https://github.com/apache/spark", "github_about_section": "Apache Spark - A unified analytics engine for large-scale data processing", "homepage_link": "https://spark.apache.org", "github_topic_closest_fit": "big-data", "contributors_all": 3083, "contributors_2025": 322, "contributors_2024": 300, "contributors_2023": 336 }, { "repo_name": "goose", "repo_link": "https://github.com/block/goose", "category": "agent", "github_about_section": "an open source, extensible AI agent that goes beyond code suggestions - install, execute, edit, and test with any LLM", "homepage_link": "https://block.github.io/goose", "github_topic_closest_fit": "ai-agents", "contributors_all": 332, "contributors_2025": 319, "contributors_2024": 32, "contributors_2023": 0 }, { "repo_name": "elasticsearch", "repo_link": "https://github.com/elastic/elasticsearch", "category": "search engine", "github_about_section": "Free and Open Source, Distributed, RESTful Search Engine", "homepage_link": "https://elastic.co/products/elasticsearch", "github_topic_closest_fit": "search-engine", "contributors_all": 2297, "contributors_2025": 316, "contributors_2024": 284, "contributors_2023": 270 }, { "repo_name": "jax", "repo_link": "https://github.com/jax-ml/jax", "category": "scientific computing", "github_about_section": "Composable transformations of Python+NumPy programs: differentiate, vectorize, JIT to GPU/TPU, and more", "homepage_link": "https://docs.jax.dev", "github_topic_closest_fit": "scientific-computing", "contributors_all": 997, "contributors_2025": 312, "contributors_2024": 280, "contributors_2023": 202 }, { "repo_name": "modelcontextprotocol", "repo_link": "https://github.com/modelcontextprotocol/modelcontextprotocol", "category": "mcp", "github_about_section": "Specification and documentation for the Model Context Protocol", "homepage_link": "https://modelcontextprotocol.io", "github_topic_closest_fit": "mcp", "contributors_all": 327, "contributors_2025": 298, "contributors_2024": 42, "contributors_2023": 0 }, { "repo_name": "executorch", "repo_link": "https://github.com/pytorch/executorch", "category": "model compiler", "github_about_section": "On-device AI across mobile, embedded and edge for PyTorch", "homepage_link": "https://executorch.ai", "contributors_all": 437, "contributors_2025": 267, "contributors_2024": 243, "contributors_2023": 77 }, { "repo_name": "numpy", "repo_link": "https://github.com/numpy/numpy", "category": "scientific computing", "github_about_section": "The fundamental package for scientific computing with Python.", "homepage_link": "https://numpy.org", "github_topic_closest_fit": "scientific-computing", "contributors_all": 2172, "contributors_2025": 235, "contributors_2024": 233, "contributors_2023": 252 }, { "repo_name": "triton", "repo_link": "https://github.com/triton-lang/triton", "category": "parallel computing dsl", "github_about_section": "Development repository for the Triton language and compiler", "homepage_link": "https://triton-lang.org", "github_topic_closest_fit": "parallel-programming", "contributors_all": 522, "contributors_2025": 233, "contributors_2024": 206, "contributors_2023": 159 }, { "repo_name": "modular", "repo_link": "https://github.com/modular/modular", "category": "parallel computing", "github_about_section": "The Modular Platform (includes MAX & Mojo)", "homepage_link": "https://docs.modular.com", "github_topic_closest_fit": "parallel-programming", "contributors_all": 366, "contributors_2025": 222, "contributors_2024": 205, "contributors_2023": 99 }, { "repo_name": "scipy", "repo_link": "https://github.com/scipy/scipy", "category": "scientific computing", "github_about_section": "SciPy library main repository", "homepage_link": "https://scipy.org", "github_topic_closest_fit": "scientific-computing", "contributors_all": 1973, "contributors_2025": 210, "contributors_2024": 251, "contributors_2023": 245 }, { "repo_name": "ollama", "repo_link": "https://github.com/ollama/ollama", "category": "inference engine", "github_about_section": "Get up and running with OpenAI gpt-oss, DeepSeek-R1, Gemma 3 and other models.", "homepage_link": "https://ollama.com", "github_topic_closest_fit": "inference", "contributors_all": 574, "contributors_2025": 202, "contributors_2024": 314, "contributors_2023": 97 }, { "repo_name": "trl", "repo_link": "https://github.com/huggingface/trl", "github_about_section": "Train transformer language models with reinforcement learning.", "homepage_link": "http://hf.co/docs/trl", "contributors_all": 433, "contributors_2025": 189, "contributors_2024": 154, "contributors_2023": 122 }, { "repo_name": "flashinfer", "repo_link": "https://github.com/flashinfer-ai/flashinfer", "category": "gpu kernels", "github_about_section": "FlashInfer: Kernel Library for LLM Serving", "homepage_link": "https://flashinfer.ai", "github_topic_closest_fit": "attention", "contributors_all": 205, "contributors_2025": 158, "contributors_2024": 50, "contributors_2023": 11 }, { "repo_name": "aiter", "repo_link": "https://github.com/ROCm/aiter", "github_about_section": "AI Tensor Engine for ROCm", "homepage_link": "https://rocm.blogs.amd.com/software-tools-optimization/aiter-ai-tensor-engine/README.html", "contributors_all": 151, "contributors_2025": 145, "contributors_2024": 10, "contributors_2023": 0 }, { "repo_name": "LMCache", "repo_link": "https://github.com/LMCache/LMCache", "github_about_section": "Supercharge Your LLM with the Fastest KV Cache Layer", "homepage_link": "https://lmcache.ai", "contributors_all": 152, "contributors_2025": 144, "contributors_2024": 18, "contributors_2023": 0 }, { "repo_name": "composable_kernel", "repo_link": "https://github.com/ROCm/composable_kernel", "category": "gpu kernels", "github_about_section": "Composable Kernel: Performance Portable Programming Model for Machine Learning Tensor Operators", "homepage_link": "https://rocm.docs.amd.com/projects/composable_kernel", "contributors_all": 190, "contributors_2025": 140, "contributors_2024": 58, "contributors_2023": 33 }, { "repo_name": "Mooncake", "repo_link": "https://github.com/kvcache-ai/Mooncake", "github_about_section": "Mooncake is the serving platform for Kimi, a leading LLM service provided by Moonshot AI.", "homepage_link": "https://kvcache-ai.github.io/Mooncake", "github_topic_closest_fit": "inference", "contributors_all": 138, "contributors_2025": 133, "contributors_2024": 13, "contributors_2023": 0 }, { "repo_name": "torchtitan", "repo_link": "https://github.com/pytorch/torchtitan", "github_about_section": "A PyTorch native platform for training generative AI models", "contributors_all": 145, "contributors_2025": 119, "contributors_2024": 43, "contributors_2023": 1 }, { "repo_name": "ao", "repo_link": "https://github.com/pytorch/ao", "github_about_section": "PyTorch native quantization and sparsity for training and inference", "homepage_link": "https://pytorch.org/ao", "github_topic_closest_fit": "quantization", "contributors_all": 178, "contributors_2025": 114, "contributors_2024": 100, "contributors_2023": 5 }, { "repo_name": "lean4", "repo_link": "https://github.com/leanprover/lean4", "category": "theorem prover", "github_about_section": "Lean 4 programming language and theorem prover", "homepage_link": "https://lean-lang.org", "github_topic_closest_fit": "lean", "contributors_all": 278, "contributors_2025": 110, "contributors_2024": 85, "contributors_2023": 64 }, { "repo_name": "ComfyUI", "repo_link": "https://github.com/comfyanonymous/ComfyUI", "category": "user interface", "github_about_section": "The most powerful and modular diffusion model GUI, api and backend with a graph/nodes interface.", "homepage_link": "https://comfy.org", "github_topic_closest_fit": "stable-diffusion", "contributors_all": 278, "contributors_2025": 108, "contributors_2024": 119, "contributors_2023": 94 }, { "repo_name": "unsloth", "repo_link": "https://github.com/unslothai/unsloth", "category": "fine tuning", "github_about_section": "Fine-tuning & Reinforcement Learning for LLMs. Train OpenAI gpt-oss, DeepSeek-R1, Qwen3, Gemma 3, TTS 2x faster with 70% less VRAM.", "homepage_link": "https://docs.unsloth.ai", "github_topic_closest_fit": "fine-tuning", "contributors_all": 127, "contributors_2025": 102, "contributors_2024": 27, "contributors_2023": 3 }, { "repo_name": "burn", "repo_link": "https://github.com/tracel-ai/burn", "github_about_section": "Burn is a next generation tensor library and Deep Learning Framework that doesn't compromise on flexibility, efficiency and portability.", "homepage_link": "https://burn.dev", "contributors_all": 237, "contributors_2025": 99, "contributors_2024": 104, "contributors_2023": 62 }, { "repo_name": "accelerate", "repo_link": "https://github.com/huggingface/accelerate", "github_about_section": "A simple way to launch, train, and use PyTorch models on almost any device and distributed configuration, automatic mixed precision (including fp8), and easy-to-configure FSDP and DeepSpeed support.", "homepage_link": "https://huggingface.co/docs/accelerate", "contributors_all": 392, "contributors_2025": 97, "contributors_2024": 124, "contributors_2023": 149 }, { "repo_name": "terminal-bench", "repo_link": "https://github.com/laude-institute/terminal-bench", "category": "benchmark", "github_about_section": "A benchmark for LLMs on complicated tasks in the terminal", "homepage_link": "https://tbench.ai", "github_topic_closest_fit": "benchmark", "contributors_all": 96, "contributors_2025": 96, "contributors_2024": 0, "contributors_2023": 0 }, { "repo_name": "DeepSpeed", "repo_link": "https://github.com/deepspeedai/DeepSpeed", "github_about_section": "DeepSpeed is a deep learning optimization library that makes distributed training and inference easy, efficient, and effective.", "homepage_link": "https://deepspeed.ai", "contributors_all": 442, "contributors_2025": 96, "contributors_2024": 134, "contributors_2023": 165 }, { "repo_name": "milvus", "repo_link": "https://github.com/milvus-io/milvus", "category": "vector database", "github_about_section": "Milvus is a high-performance, cloud-native vector database built for scalable vector ANN search", "homepage_link": "https://milvus.io", "github_topic_closest_fit": "vector-search", "contributors_all": 387, "contributors_2025": 95, "contributors_2024": 84, "contributors_2023": 72 }, { "repo_name": "cutlass", "repo_link": "https://github.com/NVIDIA/cutlass", "category": "parallel computing", "github_about_section": "CUDA Templates and Python DSLs for High-Performance Linear Algebra", "homepage_link": "https://docs.nvidia.com/cutlass/index.html", "github_topic_closest_fit": "parallel-programming", "contributors_all": 238, "contributors_2025": 94, "contributors_2024": 64, "contributors_2023": 66 }, { "repo_name": "tilelang", "repo_link": "https://github.com/tile-ai/tilelang", "category": "parallel computing dsl", "github_about_section": "Domain-specific language designed to streamline the development of high-performance GPU/CPU/Accelerators kernels", "homepage_link": "https://tilelang.com", "github_topic_closest_fit": "parallel-programming", "contributors_all": 90, "contributors_2025": 89, "contributors_2024": 1, "contributors_2023": 0 }, { "repo_name": "monarch", "repo_link": "https://github.com/meta-pytorch/monarch", "github_about_section": "PyTorch Single Controller", "homepage_link": "https://meta-pytorch.org/monarch", "contributors_all": 85, "contributors_2025": 85, "contributors_2024": 0, "contributors_2023": 0 }, { "repo_name": "Liger-Kernel", "repo_link": "https://github.com/linkedin/Liger-Kernel", "category": "kernel examples", "github_about_section": "Efficient Triton Kernels for LLM Training", "homepage_link": "https://openreview.net/pdf?id=36SjAIT42G", "github_topic_closest_fit": "triton", "contributors_all": 120, "contributors_2025": 78, "contributors_2024": 61, "contributors_2023": 0 }, { "repo_name": "nixl", "repo_link": "https://github.com/ai-dynamo/nixl", "github_about_section": "NVIDIA Inference Xfer Library (NIXL)", "contributors_all": 78, "contributors_2025": 78, "contributors_2024": 0, "contributors_2023": 0 }, { "repo_name": "jupyterlab", "repo_link": "https://github.com/jupyterlab/jupyterlab", "category": "user interface", "github_about_section": "JupyterLab computational environment.", "homepage_link": "https://jupyterlab.readthedocs.io", "github_topic_closest_fit": "jupyter", "contributors_all": 698, "contributors_2025": 77, "contributors_2024": 85, "contributors_2023": 100 }, { "repo_name": "hipBLASLt", "repo_link": "https://github.com/AMD-AGI/hipBLASLt", "category": "Basic Linear Algebra Subprograms (BLAS)", "github_about_section": "hipBLASLt is a library that provides general matrix-matrix operations with a flexible API and extends functionalities beyond a traditional BLAS library", "homepage_link": "https://rocm.docs.amd.com/projects/hipBLASLt", "github_topic_closest_fit": "matrix-multiplication", "contributors_all": 111, "contributors_2025": 69, "contributors_2024": 70, "contributors_2023": 35 }, { "repo_name": "peft", "repo_link": "https://github.com/huggingface/peft", "github_about_section": "PEFT: State-of-the-art Parameter-Efficient Fine-Tuning.", "homepage_link": "https://huggingface.co/docs/peft", "github_topic_closest_fit": "lora", "contributors_all": 272, "contributors_2025": 69, "contributors_2024": 111, "contributors_2023": 115 }, { "repo_name": "ROCm", "repo_link": "https://github.com/ROCm/ROCm", "github_about_section": "AMD ROCm Software - GitHub Home", "homepage_link": "https://rocm.docs.amd.com", "contributors_all": 166, "contributors_2025": 67, "contributors_2024": 61, "contributors_2023": 44 }, { "repo_name": "mcp-agent", "repo_link": "https://github.com/lastmile-ai/mcp-agent", "category": "mcp", "github_about_section": "Build effective agents using Model Context Protocol and simple workflow patterns", "github_topic_closest_fit": "mcp", "contributors_all": 63, "contributors_2025": 63, "contributors_2024": 1, "contributors_2023": 0 }, { "repo_name": "rdma-core", "repo_link": "https://github.com/linux-rdma/rdma-core", "github_about_section": "RDMA core userspace libraries and daemons", "contributors_all": 437, "contributors_2025": 58, "contributors_2024": 61, "contributors_2023": 66 }, { "repo_name": "onnx", "repo_link": "https://github.com/onnx/onnx", "category": "machine learning interoperability", "github_about_section": "Open standard for machine learning interoperability", "homepage_link": "https://onnx.ai", "github_topic_closest_fit": "onnx", "contributors_all": 370, "contributors_2025": 56, "contributors_2024": 45, "contributors_2023": 61 }, { "repo_name": "letta", "repo_link": "https://github.com/letta-ai/letta", "category": "agent", "github_about_section": "Letta is the platform for building stateful agents: open AI with advanced memory that can learn and self-improve over time.", "homepage_link": "https://docs.letta.com", "github_topic_closest_fit": "ai-agents", "contributors_all": 157, "contributors_2025": 56, "contributors_2024": 75, "contributors_2023": 47 }, { "repo_name": "helion", "repo_link": "https://github.com/pytorch/helion", "category": "parallel computing dsl", "github_about_section": "A Python-embedded DSL that makes it easy to write fast, scalable ML kernels with minimal boilerplate.", "homepage_link": "https://helionlang.com", "github_topic_closest_fit": "parallel-programming", "contributors_all": 49, "contributors_2025": 49, "contributors_2024": 0, "contributors_2023": 0 }, { "repo_name": "hip", "repo_link": "https://github.com/ROCm/hip", "github_about_section": "HIP: C++ Heterogeneous-Compute Interface for Portability", "homepage_link": "https://rocmdocs.amd.com/projects/HIP", "contributors_all": 288, "contributors_2025": 46, "contributors_2024": 31, "contributors_2023": 25 }, { "repo_name": "openevolve", "repo_link": "https://github.com/codelion/openevolve", "github_about_section": "Open-source implementation of AlphaEvolve", "github_topic_closest_fit": "genetic-algorithm", "contributors_all": 46, "contributors_2025": 46, "contributors_2024": 0, "contributors_2023": 0 }, { "repo_name": "lightning-thunder", "repo_link": "https://github.com/Lightning-AI/lightning-thunder", "github_about_section": "PyTorch compiler that accelerates training and inference. Get built-in optimizations for performance, memory, parallelism, and easily write your own.", "contributors_all": 76, "contributors_2025": 44, "contributors_2024": 47, "contributors_2023": 29 }, { "repo_name": "truss", "repo_link": "https://github.com/basetenlabs/truss", "category": "inference engine", "github_about_section": "The simplest way to serve AI/ML models in production", "homepage_link": "https://truss.baseten.co", "github_topic_closest_fit": "inference", "contributors_all": 72, "contributors_2025": 44, "contributors_2024": 30, "contributors_2023": 21 }, { "repo_name": "ondemand", "repo_link": "https://github.com/OSC/ondemand", "github_about_section": "Supercomputing. Seamlessly. Open, Interactive HPC Via the Web", "homepage_link": "https://openondemand.org", "github_topic_closest_fit": "hpc", "contributors_all": 117, "contributors_2025": 43, "contributors_2024": 23, "contributors_2023": 21 }, { "repo_name": "pybind11", "repo_link": "https://github.com/pybind/pybind11", "github_about_section": "Seamless operability between C++11 and Python", "homepage_link": "https://pybind11.readthedocs.io", "github_topic_closest_fit": "bindings", "contributors_all": 404, "contributors_2025": 43, "contributors_2024": 45, "contributors_2023": 42 }, { "repo_name": "cuda-python", "repo_link": "https://github.com/NVIDIA/cuda-python", "github_about_section": "CUDA Python: Performance meets Productivity", "homepage_link": "https://nvidia.github.io/cuda-python", "github_topic_closest_fit": "parallel-programming", "contributors_all": 48, "contributors_2025": 41, "contributors_2024": 12, "contributors_2023": 1 }, { "repo_name": "warp", "repo_link": "https://github.com/NVIDIA/warp", "category": "spatial computing", "github_about_section": "A Python framework for accelerated simulation, data generation and spatial computing.", "homepage_link": "https://nvidia.github.io/warp", "github_topic_closest_fit": "physics-simulation", "contributors_all": 79, "contributors_2025": 40, "contributors_2024": 29, "contributors_2023": 17 }, { "repo_name": "metaflow", "repo_link": "https://github.com/Netflix/metaflow", "github_about_section": "Build, Manage and Deploy AI/ML Systems", "homepage_link": "https://metaflow.org", "contributors_all": 121, "contributors_2025": 37, "contributors_2024": 35, "contributors_2023": 28 }, { "repo_name": "numba", "repo_link": "https://github.com/numba/numba", "github_about_section": "NumPy aware dynamic Python compiler using LLVM", "homepage_link": "https://numba.pydata.org", "contributors_all": 430, "contributors_2025": 36, "contributors_2024": 32, "contributors_2023": 55 }, { "repo_name": "SWE-bench", "repo_link": "https://github.com/SWE-bench/SWE-bench", "category": "benchmark", "github_about_section": "SWE-bench: Can Language Models Resolve Real-world Github Issues?", "homepage_link": "https://swebench.com", "github_topic_closest_fit": "benchmark", "contributors_all": 66, "contributors_2025": 33, "contributors_2024": 37, "contributors_2023": 9 }, { "repo_name": "AdaptiveCpp", "repo_link": "https://github.com/AdaptiveCpp/AdaptiveCpp", "github_about_section": "Compiler for multiple programming models (SYCL, C++ standard parallelism, HIP/CUDA) for CPUs and GPUs from all vendors: The independent, community-driven compiler for C++-based heterogeneous programming models. Lets applications adapt themselves to all the hardware in the system - even at runtime!", "homepage_link": "https://adaptivecpp.github.io", "contributors_all": 93, "contributors_2025": 32, "contributors_2024": 32, "contributors_2023": 24 }, { "repo_name": "Triton-distributed", "repo_link": "https://github.com/ByteDance-Seed/Triton-distributed", "github_about_section": "Distributed Compiler based on Triton for Parallel Systems", "homepage_link": "https://triton-distributed.readthedocs.io", "contributors_all": 30, "contributors_2025": 30, "contributors_2024": 0, "contributors_2023": 0 }, { "repo_name": "ThunderKittens", "repo_link": "https://github.com/HazyResearch/ThunderKittens", "category": "parallel computing", "github_about_section": "Tile primitives for speedy kernels", "homepage_link": "https://hazyresearch.stanford.edu/blog/2024-10-29-tk2", "github_topic_closest_fit": "parallel-programming", "contributors_all": 34, "contributors_2025": 29, "contributors_2024": 13, "contributors_2023": 0 }, { "repo_name": "dstack", "repo_link": "https://github.com/dstackai/dstack", "category": "gpu provisioning and orchestration", "github_about_section": "dstack is an open-source control plane for running development, training, and inference jobs on GPUs-across hyperscalers, neoclouds, or on-prem.", "homepage_link": "https://dstack.ai", "github_topic_closest_fit": "orchestration", "contributors_all": 69, "contributors_2025": 28, "contributors_2024": 42, "contributors_2023": 14 }, { "repo_name": "ome", "repo_link": "https://github.com/sgl-project/ome", "github_about_section": "OME is a Kubernetes operator for enterprise-grade management and serving of Large Language Models (LLMs)", "homepage_link": "http://docs.sglang.ai/ome", "github_topic_closest_fit": "k8s", "contributors_all": 28, "contributors_2025": 28, "contributors_2024": 0, "contributors_2023": 0 }, { "repo_name": "pocl", "repo_link": "https://github.com/pocl/pocl", "github_about_section": "pocl - Portable Computing Language", "homepage_link": "https://portablecl.org", "github_topic_closest_fit": "parallel-programming", "contributors_all": 166, "contributors_2025": 26, "contributors_2024": 27, "contributors_2023": 21 }, { "repo_name": "server", "repo_link": "https://github.com/triton-inference-server/server", "github_about_section": "The Triton Inference Server provides an optimized cloud and edge inferencing solution.", "homepage_link": "https://docs.nvidia.com/deeplearning/triton-inference-server/user-guide/docs/index.html", "github_topic_closest_fit": "inference", "contributors_all": 147, "contributors_2025": 24, "contributors_2024": 36, "contributors_2023": 34 }, { "repo_name": "Vulkan-Hpp", "repo_link": "https://github.com/KhronosGroup/Vulkan-Hpp", "category": "graphics api", "github_about_section": "Open-Source Vulkan C++ API", "homepage_link": "https://vulkan.org", "github_topic_closest_fit": "vulkan", "contributors_all": 102, "contributors_2025": 21, "contributors_2024": 15, "contributors_2023": 15 }, { "repo_name": "ccache", "repo_link": "https://github.com/ccache/ccache", "github_about_section": "ccache - a fast compiler cache", "homepage_link": "https://ccache.dev", "contributors_all": 218, "contributors_2025": 20, "contributors_2024": 28, "contributors_2023": 22 }, { "repo_name": "lapack", "repo_link": "https://github.com/Reference-LAPACK/lapack", "category": "linear algebra", "github_about_section": "LAPACK is a library of Fortran subroutines for solving the most commonly occurring problems in numerical linear algebra.", "homepage_link": "https://netlib.org/lapack", "github_topic_closest_fit": "linear-algebra", "contributors_all": 178, "contributors_2025": 20, "contributors_2024": 24, "contributors_2023": 42 }, { "repo_name": "Vulkan-Tools", "repo_link": "https://github.com/KhronosGroup/Vulkan-Tools", "category": "graphics api", "github_about_section": "Vulkan Development Tools", "homepage_link": "https://vulkan.org", "github_topic_closest_fit": "vulkan", "contributors_all": 248, "contributors_2025": 20, "contributors_2024": 24, "contributors_2023": 24 }, { "repo_name": "tflite-micro", "repo_link": "https://github.com/tensorflow/tflite-micro", "github_about_section": "Infrastructure to enable deployment of ML models to low-power resource-constrained embedded targets (including microcontrollers and digital signal processors).", "contributors_all": 111, "contributors_2025": 19, "contributors_2024": 25, "contributors_2023": 31 }, { "repo_name": "Vulkan-Docs", "repo_link": "https://github.com/KhronosGroup/Vulkan-Docs", "category": "graphics api", "github_about_section": "The Vulkan API Specification and related tools", "homepage_link": "https://vulkan.org", "github_topic_closest_fit": "vulkan", "contributors_all": 141, "contributors_2025": 18, "contributors_2024": 21, "contributors_2023": 34 }, { "repo_name": "quack", "repo_link": "https://github.com/Dao-AILab/quack", "category": "kernel examples", "github_about_section": "A Quirky Assortment of CuTe Kernels", "contributors_all": 17, "contributors_2025": 17, "contributors_2024": 0, "contributors_2023": 0 }, { "repo_name": "oneDPL", "repo_link": "https://github.com/uxlfoundation/oneDPL", "github_about_section": "oneAPI DPC++ Library (oneDPL)", "homepage_link": "https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/dpc-library.html", "contributors_all": 67, "contributors_2025": 17, "contributors_2024": 29, "contributors_2023": 28 }, { "repo_name": "KernelBench", "repo_link": "https://github.com/ScalingIntelligence/KernelBench", "category": "benchmark", "github_about_section": "KernelBench: Can LLMs Write GPU Kernels? - Benchmark with Torch -> CUDA problems", "homepage_link": "https://scalingintelligence.stanford.edu/blogs/kernelbench", "github_topic_closest_fit": "benchmark", "contributors_all": 19, "contributors_2025": 16, "contributors_2024": 3, "contributors_2023": 0 }, { "repo_name": "reference-kernels", "repo_link": "https://github.com/gpu-mode/reference-kernels", "category": "kernel examples", "github_about_section": "Official Problem Sets / Reference Kernels for the GPU MODE Leaderboard!", "homepage_link": "https://gpumode.com", "contributors_all": 16, "contributors_2025": 16, "contributors_2024": 0, "contributors_2023": 0 }, { "repo_name": "synthetic-data-kit", "repo_link": "https://github.com/meta-llama/synthetic-data-kit", "category": "synthetic data generation", "github_about_section": "Tool for generating high quality Synthetic datasets", "homepage_link": "https://pypi.org/project/synthetic-data-kit", "github_topic_closest_fit": "synthetic-dataset-generation", "contributors_all": 15, "contributors_2025": 15, "contributors_2024": 0, "contributors_2023": 0 }, { "repo_name": "tritonparse", "repo_link": "https://github.com/meta-pytorch/tritonparse", "github_about_section": "TritonParse: A Compiler Tracer, Visualizer, and Reproducer for Triton Kernels", "homepage_link": "https://meta-pytorch.org/tritonparse", "contributors_all": 15, "contributors_2025": 15, "contributors_2024": 0, "contributors_2023": 0 }, { "repo_name": "kernels", "repo_link": "https://github.com/huggingface/kernels", "category": "gpu kernels", "github_about_section": "Load compute kernels from the Hub", "contributors_all": 15, "contributors_2025": 14, "contributors_2024": 2, "contributors_2023": 0 }, { "repo_name": "Wan2.2", "repo_link": "https://github.com/Wan-Video/Wan2.2", "category": "video generation", "github_about_section": "Wan: Open and Advanced Large-Scale Video Generative Models", "homepage_link": "https://wan.video", "github_topic_closest_fit": "diffusion-models", "contributors_all": 14, "contributors_2025": 14, "contributors_2024": 0, "contributors_2023": 0 }, { "repo_name": "SYCL-Docs", "repo_link": "https://github.com/KhronosGroup/SYCL-Docs", "github_about_section": "SYCL Open Source Specification", "homepage_link": "https://khronos.org/sycl", "github_topic_closest_fit": "parallel-programming", "contributors_all": 67, "contributors_2025": 13, "contributors_2024": 20, "contributors_2023": 27 }, { "repo_name": "Primus-Turbo", "repo_link": "https://github.com/AMD-AGI/Primus-Turbo", "contributors_all": 12, "contributors_2025": 12, "contributors_2024": 0, "contributors_2023": 0 }, { "repo_name": "flashinfer-bench", "repo_link": "https://github.com/flashinfer-ai/flashinfer-bench", "category": "benchmark", "github_about_section": "Building the Virtuous Cycle for AI-driven LLM Systems", "homepage_link": "https://bench.flashinfer.ai", "github_topic_closest_fit": "benchmark", "contributors_all": 12, "contributors_2025": 11, "contributors_2024": 0, "contributors_2023": 0 }, { "repo_name": "FTorch", "repo_link": "https://github.com/Cambridge-ICCS/FTorch", "category": "wrapper", "github_about_section": "A library for directly calling PyTorch ML models from Fortran.", "homepage_link": "https://cambridge-iccs.github.io/FTorch", "github_topic_closest_fit": "machine-learning", "contributors_all": 20, "contributors_2025": 11, "contributors_2024": 8, "contributors_2023": 9 }, { "repo_name": "TensorRT", "repo_link": "https://github.com/NVIDIA/TensorRT", "github_about_section": "NVIDIA TensorRT is an SDK for high-performance deep learning inference on NVIDIA GPUs. This repository contains the open source components of TensorRT.", "homepage_link": "https://developer.nvidia.com/tensorrt", "contributors_all": 104, "contributors_2025": 10, "contributors_2024": 18, "contributors_2023": 19 }, { "repo_name": "TileIR", "repo_link": "https://github.com/microsoft/TileIR", "category": "parallel computing dsl", "github_about_section": "TileIR (tile-ir) is a concise domain-specific IR designed to streamline the development of high-performance GPU/CPU kernels (e.g., GEMM, Dequant GEMM, FlashAttention, LinearAttention). By employing a Pythonic syntax with an underlying compiler infrastructure on top of TVM, TileIR allows developers to focus on productivity without sacrificing the low-level optimizations necessary for state-of-the-art performance.", "github_topic_closest_fit": "parallel-programming", "contributors_all": 10, "contributors_2025": 10, "contributors_2024": 1, "contributors_2023": 0 }, { "repo_name": "kernels-community", "repo_link": "https://github.com/huggingface/kernels-community", "category": "gpu kernels", "homepage_link": "https://huggingface.co/kernels-community", "github_about_section": "Kernel sources for https://huggingface.co/kernels-community", "contributors_all": 9, "contributors_2025": 9, "contributors_2024": 0, "contributors_2023": 0 }, { "repo_name": "GEAK-agent", "repo_link": "https://github.com/AMD-AGI/GEAK-agent", "category": "agent", "github_about_section": "It is an LLM-based AI agent, which can write correct and efficient gpu kernels automatically.", "github_topic_closest_fit": "ai-agents", "contributors_all": 9, "contributors_2025": 9, "contributors_2024": 0, "contributors_2023": 0 }, { "repo_name": "neuronx-distributed-inference", "repo_link": "https://github.com/aws-neuron/neuronx-distributed-inference", "contributors_all": 11, "contributors_2025": 9, "contributors_2024": 3, "contributors_2023": 0 }, { "repo_name": "OpenCL-SDK", "repo_link": "https://github.com/KhronosGroup/OpenCL-SDK", "github_about_section": "OpenCL SDK", "homepage_link": "https://khronos.org/opencl", "github_topic_closest_fit": "parallel-programming", "contributors_all": 25, "contributors_2025": 8, "contributors_2024": 6, "contributors_2023": 9 }, { "repo_name": "ZLUDA", "repo_link": "https://github.com/vosen/ZLUDA", "github_about_section": "CUDA on non-NVIDIA GPUs", "homepage_link": "https://vosen.github.io/ZLUDA", "github_topic_closest_fit": "parallel-programming", "contributors_all": 15, "contributors_2025": 8, "contributors_2024": 4, "contributors_2023": 0 }, { "repo_name": "intelliperf", "repo_link": "https://github.com/AMDResearch/intelliperf", "category": "performance testing", "github_about_section": "Automated bottleneck detection and solution orchestration", "homepage_link": "https://arxiv.org/html/2508.20258v1", "github_topic_closest_fit": "profiling", "contributors_all": 7, "contributors_2025": 7, "contributors_2024": 0, "contributors_2023": 0 }, { "repo_name": "nccl", "repo_link": "https://github.com/NVIDIA/nccl", "github_about_section": "Optimized primitives for collective multi-GPU communication", "homepage_link": "https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/index.html", "contributors_all": 51, "contributors_2025": 7, "contributors_2024": 5, "contributors_2023": 6 }, { "repo_name": "cudnn-frontend", "repo_link": "https://github.com/NVIDIA/cudnn-frontend", "category": "parallel computing", "github_about_section": "cudnn_frontend provides a c++ wrapper for the cudnn backend API and samples on how to use it", "homepage_link": "https://developer.nvidia.com/cudnn", "github_topic_closest_fit": "parallel-programming", "contributors_all": 12, "contributors_2025": 6, "contributors_2024": 5, "contributors_2023": 1 }, { "repo_name": "BitBLAS", "repo_link": "https://github.com/microsoft/BitBLAS", "category": "Basic Linear Algebra Subprograms (BLAS)", "github_about_section": "BitBLAS is a library to support mixed-precision matrix multiplications, especially for quantized LLM deployment.", "github_topic_closest_fit": "matrix-multiplication", "contributors_all": 17, "contributors_2025": 5, "contributors_2024": 14, "contributors_2023": 0 }, { "repo_name": "Self-Forcing", "repo_link": "https://github.com/guandeh17/Self-Forcing", "category": "video generation", "github_about_section": "Official codebase for \"Self Forcing: Bridging Training and Inference in Autoregressive Video Diffusion\" (NeurIPS 2025 Spotlight)", "homepage_link": "https://self-forcing.github.io", "github_topic_closest_fit": "diffusion-models", "contributors_all": 4, "contributors_2025": 4, "contributors_2024": 0, "contributors_2023": 0 }, { "repo_name": "TritonBench", "repo_link": "https://github.com/thunlp/TritonBench", "category": "benchmark", "github_about_section": "TritonBench: Benchmarking Large Language Model Capabilities for Generating Triton Operators", "homepage_link": "https://arxiv.org/abs/2502.14752", "github_topic_closest_fit": "benchmark", "contributors_all": 3, "contributors_2025": 3, "contributors_2024": 0, "contributors_2023": 0 }, { "repo_name": "hatchet", "repo_link": "https://github.com/LLNL/hatchet", "category": "performance testing", "github_about_section": "Graph-indexed Pandas DataFrames for analyzing hierarchical performance data", "homepage_link": "https://llnl-hatchet.readthedocs.io", "github_topic_closest_fit": "profiling", "contributors_all": 25, "contributors_2025": 3, "contributors_2024": 6, "contributors_2023": 8 }, { "repo_name": "streamv2v", "repo_link": "https://github.com/Jeff-LiangF/streamv2v", "category": "video generation", "github_about_section": "Official Pytorch implementation of StreamV2V.", "homepage_link": "https://jeff-liangf.github.io/projects/streamv2v", "github_topic_closest_fit": "diffusion-models", "contributors_all": 7, "contributors_2025": 3, "contributors_2024": 6, "contributors_2023": 0 }, { "repo_name": "mistral-inference", "repo_link": "https://github.com/mistralai/mistral-inference", "category": "inference engine", "github_about_section": "Official inference library for Mistral models", "homepage_link": "https://mistral.ai", "github_topic_closest_fit": "inference", "contributors_all": 29, "contributors_2025": 2, "contributors_2024": 17, "contributors_2023": 14 }, { "repo_name": "omnitrace", "repo_link": "https://github.com/ROCm/omnitrace", "category": "performance testing", "github_about_section": "Omnitrace: Application Profiling, Tracing, and Analysis", "homepage_link": "https://rocm.docs.amd.com/projects/omnitrace", "github_topic_closest_fit": "profiling", "contributors_all": 16, "contributors_2025": 2, "contributors_2024": 12, "contributors_2023": 2 }, { "repo_name": "cuJSON", "repo_link": "https://github.com/AutomataLab/cuJSON", "category": "library leveraging parallel compute", "github_about_section": "cuJSON: A Highly Parallel JSON Parser for GPUs", "homepage_link": "https://dl.acm.org/doi/10.1145/3760250.3762222", "github_topic_closest_fit": "json-parser", "contributors_all": 2, "contributors_2025": 2, "contributors_2024": 2, "contributors_2023": 0 }, { "repo_name": "IMO2025", "repo_link": "https://github.com/harmonic-ai/IMO2025", "category": "formal mathematical reasoning", "github_about_section": "Harmonic's model Aristotle achieved gold medal performance, solving 5 problems. This repository contains the lean statement files and proofs for Problems 1-5.", "homepage_link": "https://harmonic.fun", "github_topic_closest_fit": "lean", "contributors_all": 2, "contributors_2025": 2, "contributors_2024": 0, "contributors_2023": 0 }, { "repo_name": "RaBitQ", "repo_link": "https://github.com/gaoj0017/RaBitQ", "github_about_section": "[SIGMOD 2024] RaBitQ: Quantizing High-Dimensional Vectors with a Theoretical Error Bound for Approximate Nearest Neighbor Search", "homepage_link": "https://github.com/VectorDB-NTU/RaBitQ-Library", "github_topic_closest_fit": "nearest-neighbor-search", "contributors_all": 2, "contributors_2025": 2, "contributors_2024": 1, "contributors_2023": 0 }, { "repo_name": "torchdendrite", "repo_link": "https://github.com/sandialabs/torchdendrite", "category": "machine learning framework", "github_about_section": "Dendrites for PyTorch and SNNTorch neural networks", "contributors_all": 2, "contributors_2025": 1, "contributors_2024": 1, "contributors_2023": 0 }, { "repo_name": "triton-runner", "repo_link": "https://github.com/toyaix/triton-runner", "github_about_section": "Multi-Level Triton Runner supporting Python, IR, PTX, and cubin.", "homepage_link": "https://triton-runner.org", "contributors_all": 1, "contributors_2025": 1, "contributors_2024": 0, "contributors_2023": 0 }, { "repo_name": "nvcc4jupyter", "repo_link": "https://github.com/andreinechaev/nvcc4jupyter", "github_about_section": "A plugin for Jupyter Notebook to run CUDA C/C++ code", "homepage_link": "https://nvcc4jupyter.readthedocs.io", "contributors_all": 9, "contributors_2025": 0, "contributors_2024": 3, "contributors_2023": 3 }, { "repo_name": "CU2CL", "repo_link": "https://github.com/vtsynergy/CU2CL", "github_about_section": "A prototype CUDA-to-OpenCL source-to-source translator, built on the Clang compiler framework", "homepage_link": "http://chrec.cs.vt.edu/cu2cl", "github_topic_closest_fit": "parallel-programming", "contributors_all": 3, "contributors_2025": 0, "contributors_2024": 0, "contributors_2023": 0 }, { "repo_name": "triSYCL", "repo_link": "https://github.com/triSYCL/triSYCL", "github_about_section": "Generic system-wide modern C++ for heterogeneous platforms with SYCL from Khronos Group", "homepage_link": "https://trisycl.github.io/triSYCL/Doxygen/triSYCL/html/index.html", "github_topic_closest_fit": "parallel-programming", "contributors_all": 31, "contributors_2025": 0, "contributors_2024": 1, "contributors_2023": 3 }, { "repo_name": "cupti", "repo_link": "https://github.com/cwpearson/cupti", "category": "performance testing", "github_about_section": "Profile how CUDA applications create and modify data in memory.", "github_topic_closest_fit": "profiling", "contributors_all": 1, "contributors_2025": 0, "contributors_2024": 0, "contributors_2023": 0 }, { "repo_name": "ort", "repo_link": "https://github.com/pytorch/ort", "github_about_section": "Accelerate PyTorch models with ONNX Runtime", "contributors_all": 47, "contributors_2025": 0, "contributors_2024": 7, "contributors_2023": 9 }, { "repo_name": "StreamDiffusion", "repo_link": "https://github.com/cumulo-autumn/StreamDiffusion", "category": "image generation", "github_about_section": "StreamDiffusion: A Pipeline-Level Solution for Real-Time Interactive Generation", "homepage_link": "https://arxiv.org/abs/2312.12491", "github_topic_closest_fit": "diffusion-models", "contributors_all": 29, "contributors_2025": 0, "contributors_2024": 9, "contributors_2023": 25 }, { "repo_name": "torchdynamo", "repo_link": "https://github.com/pytorch/torchdynamo", "github_about_section": "A Python-level JIT compiler designed to make unmodified PyTorch programs faster.", "contributors_all": 63, "contributors_2025": 0, "contributors_2024": 1, "contributors_2023": 4 }, { "repo_name": "wandb", "repo_link": "https://github.com/wandb/wandb", "github_about_section": "The AI developer platform. Use Weights & Biases to train and fine-tune models, and manage models from experimentation to production.", "homepage_link": "https://wandb.ai" } ]