Update SemEval2015.py
Browse files添加使用nltk对text分词,并加入了ATESP_BIEOS_tags,ATESP_BIO_tags,ATE_BIEOS_tags,ATE_BIO_tags 4种标记方法。
- SemEval2015.py +97 -5
SemEval2015.py
CHANGED
|
@@ -42,7 +42,7 @@ _CONFIG = [
|
|
| 42 |
"laptops"
|
| 43 |
]
|
| 44 |
|
| 45 |
-
_VERSION = "0.0
|
| 46 |
|
| 47 |
_HOMEPAGE_URL = "https://alt.qcri.org/semeval2015/task12/index.php?id=data-and-tools/"
|
| 48 |
_DOWNLOAD_URL = "https://raw.githubusercontent.com/YaxinCui/ABSADataset/main/SemEval2015Task12Corrected/{split}/{domain}_{split}.xml"
|
|
@@ -89,6 +89,12 @@ class SemEval2015(datasets.GeneratorBasedBuilder):
|
|
| 89 |
'target': datasets.Value(dtype='string'),
|
| 90 |
'to': datasets.Value(dtype='string')}
|
| 91 |
],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 92 |
'domain': datasets.Value(dtype='string'),
|
| 93 |
'reviewId': datasets.Value(dtype='string'),
|
| 94 |
'sentenceId': datasets.Value(dtype='string')
|
|
@@ -173,12 +179,98 @@ class SemEvalXMLDataset():
|
|
| 173 |
|
| 174 |
Opinions.sort(key=lambda x: x["from"])
|
| 175 |
# 从小到大排序
|
| 176 |
-
|
| 177 |
-
self.SentenceWithOpinions.append({
|
| 178 |
"text": text,
|
| 179 |
"opinions": Opinions,
|
| 180 |
"domain": domain,
|
| 181 |
"reviewId": reviewId,
|
| 182 |
"sentenceId": sentenceId
|
| 183 |
-
|
| 184 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
"laptops"
|
| 43 |
]
|
| 44 |
|
| 45 |
+
_VERSION = "0.1.0"
|
| 46 |
|
| 47 |
_HOMEPAGE_URL = "https://alt.qcri.org/semeval2015/task12/index.php?id=data-and-tools/"
|
| 48 |
_DOWNLOAD_URL = "https://raw.githubusercontent.com/YaxinCui/ABSADataset/main/SemEval2015Task12Corrected/{split}/{domain}_{split}.xml"
|
|
|
|
| 89 |
'target': datasets.Value(dtype='string'),
|
| 90 |
'to': datasets.Value(dtype='string')}
|
| 91 |
],
|
| 92 |
+
'tokens': [datasets.Value(dtype='string')],
|
| 93 |
+
'ATESP_BIEOS_tags': [datasets.Value(dtype='string')],
|
| 94 |
+
'ATESP_BIO_tags': [datasets.Value(dtype='string')],
|
| 95 |
+
'ATE_BIEOS_tags': [datasets.Value(dtype='string')],
|
| 96 |
+
'ATE_BIO_tags': [datasets.Value(dtype='string')],
|
| 97 |
+
|
| 98 |
'domain': datasets.Value(dtype='string'),
|
| 99 |
'reviewId': datasets.Value(dtype='string'),
|
| 100 |
'sentenceId': datasets.Value(dtype='string')
|
|
|
|
| 179 |
|
| 180 |
Opinions.sort(key=lambda x: x["from"])
|
| 181 |
# 从小到大排序
|
| 182 |
+
example = {
|
|
|
|
| 183 |
"text": text,
|
| 184 |
"opinions": Opinions,
|
| 185 |
"domain": domain,
|
| 186 |
"reviewId": reviewId,
|
| 187 |
"sentenceId": sentenceId
|
| 188 |
+
}
|
| 189 |
+
example = addTokenAndLabel(example)
|
| 190 |
+
self.SentenceWithOpinions.append(example)
|
| 191 |
+
|
| 192 |
+
import nltk
|
| 193 |
+
|
| 194 |
+
def clearOpinion(example):
|
| 195 |
+
opinions = example['opinions']
|
| 196 |
+
skipNullOpinions = []
|
| 197 |
+
# 去掉NULL的opinion
|
| 198 |
+
for opinion in opinions:
|
| 199 |
+
targetKey = 'target'
|
| 200 |
+
target = opinion[targetKey]
|
| 201 |
+
from_ = opinion['from']
|
| 202 |
+
to = opinion['to']
|
| 203 |
+
# skill NULL
|
| 204 |
+
if target.lower() == 'null' or target == '' or from_ == to:
|
| 205 |
+
continue
|
| 206 |
+
skipNullOpinions.append(opinion)
|
| 207 |
+
|
| 208 |
+
# delete repeate Opinions
|
| 209 |
+
skipNullOpinions.sort(key=lambda x: int(x['from'])) # 从小到大排序
|
| 210 |
+
UniOpinions = []
|
| 211 |
+
for opinion in skipNullOpinions:
|
| 212 |
+
if len(UniOpinions) < 1:
|
| 213 |
+
UniOpinions.append(opinion)
|
| 214 |
+
else:
|
| 215 |
+
if opinion['from'] != UniOpinions[-1]['from'] and opinion['to'] != UniOpinions[-1]['to']:
|
| 216 |
+
UniOpinions.append(opinion)
|
| 217 |
+
return UniOpinions
|
| 218 |
+
|
| 219 |
+
|
| 220 |
+
def addTokenAndLabel(example):
|
| 221 |
+
tokens = []
|
| 222 |
+
labels = []
|
| 223 |
+
|
| 224 |
+
text = example['text']
|
| 225 |
+
UniOpinions = clearOpinion(example)
|
| 226 |
+
text_begin = 0
|
| 227 |
+
|
| 228 |
+
for aspect in UniOpinions:
|
| 229 |
+
polarity = aspect['polarity'][:3].upper()
|
| 230 |
+
pre_O_tokens = nltk.word_tokenize(text[text_begin: int(aspect['from'])])
|
| 231 |
+
tokens.extend(pre_O_tokens)
|
| 232 |
+
labels.extend(['O']*len(pre_O_tokens))
|
| 233 |
+
|
| 234 |
+
BIES_tokens = nltk.word_tokenize(text[int(aspect['from']): int(aspect['to'])])
|
| 235 |
+
tokens.extend(BIES_tokens)
|
| 236 |
+
|
| 237 |
+
assert len(BIES_tokens) > 0, print('error in BIES_tokens length')
|
| 238 |
+
|
| 239 |
+
if len(BIES_tokens)==1:
|
| 240 |
+
labels.append('S-'+polarity)
|
| 241 |
+
elif len(BIES_tokens)==2:
|
| 242 |
+
labels.append('B-'+polarity)
|
| 243 |
+
labels.append('E-'+polarity)
|
| 244 |
+
else:
|
| 245 |
+
labels.append('B-'+polarity)
|
| 246 |
+
labels.extend(['I-'+polarity]*(len(BIES_tokens)-2))
|
| 247 |
+
labels.append('E-'+polarity)
|
| 248 |
+
|
| 249 |
+
text_begin = int(aspect['to'])
|
| 250 |
+
|
| 251 |
+
|
| 252 |
+
pre_O_tokens = nltk.word_tokenize(text[text_begin: ])
|
| 253 |
+
labels.extend(['O']*len(pre_O_tokens))
|
| 254 |
+
tokens.extend(pre_O_tokens)
|
| 255 |
+
|
| 256 |
+
example['tokens'] = tokens
|
| 257 |
+
example['ATESP_BIEOS_tags'] = labels
|
| 258 |
+
|
| 259 |
+
|
| 260 |
+
ATESP_BIO_labels = []
|
| 261 |
+
for label in labels:
|
| 262 |
+
ATESP_BIO_labels.append(label.replace('E-', 'I-').replace('S-', 'B-'))
|
| 263 |
+
example['ATESP_BIO_tags'] = ATESP_BIO_labels
|
| 264 |
+
|
| 265 |
+
|
| 266 |
+
ATE_BIEOS_labels = []
|
| 267 |
+
for label in labels:
|
| 268 |
+
ATE_BIEOS_labels.append(label[0])
|
| 269 |
+
example['ATE_BIEOS_tags'] = ATE_BIEOS_labels
|
| 270 |
+
|
| 271 |
+
ATE_BIO_labels = []
|
| 272 |
+
for label in ATESP_BIO_labels:
|
| 273 |
+
ATE_BIO_labels.append(label[0])
|
| 274 |
+
example['ATE_BIO_tags'] = ATE_BIO_labels
|
| 275 |
+
|
| 276 |
+
return example
|