| import os | |
| import pandas as pd | |
| import datasets | |
| from glob import glob | |
| import zipfile | |
| class dummy(datasets.GeneratorBasedBuilder): | |
| def _info(self): | |
| return datasets.DatasetInfo(features=datasets.Features({'image':datasets.Image(),'text':datasets.Value('string')})) | |
| def extract_all(self, dir): | |
| zip_files = glob(dir+'/**/**.zip', recursive=True) | |
| for file in zip_files: | |
| with zipfile.ZipFile(file) as item: | |
| item.extractall('/'.join(file.split('/')[:-1])) | |
| def get_all_files(self, dir): | |
| files = [] | |
| valid_file_ext = ['txt', 'csv', 'tsv', 'xlsx', 'xls', 'xml', 'json', 'jsonl', 'html', 'wav', 'mp3', 'jpg', 'png'] | |
| for ext in valid_file_ext: | |
| files += glob(f"{dir}/**/**.{ext}", recursive = True) | |
| return files | |
| def _split_generators(self, dl_manager): | |
| url = [os.path.abspath(os.path.expanduser(dl_manager.manual_dir))] | |
| downloaded_files = dl_manager.download_and_extract(url) | |
| return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={'filepaths':{'inputs':sorted(glob(downloaded_files[0]+'/data/**.png')),'targets1':sorted(glob(downloaded_files[0]+'/data/**.txt')),} })] | |
| def read_image(self, filepath): | |
| if filepath.endswith('.jpg') or filepath.endswith('.png'): | |
| raw_data = {'bytes':[filepath]} | |
| else: | |
| raw_data = {'text':[open(filepath).read()]} | |
| return pd.DataFrame(raw_data) | |
| def _generate_examples(self, filepaths): | |
| _id = 0 | |
| for i,filepath in enumerate(filepaths['inputs']): | |
| df = self.read_image(filepath) | |
| dfs = [df] | |
| dfs.append(self.read_image(filepaths['targets1'][i])) | |
| df = pd.concat(dfs, axis = 1) | |
| if len(df.columns) != 2: | |
| continue | |
| df.columns = ['image', 'text'] | |
| for _, record in df.iterrows(): | |
| yield str(_id), {'image':record['image'],'text':record['text']} | |
| _id += 1 | |