|
|
|
|
|
import os |
|
|
import datasets |
|
|
import pandas as pd |
|
|
from glob import glob |
|
|
|
|
|
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
|
|
|
|
|
_CITATION = """ |
|
|
""" |
|
|
_DESCRIPTION = """ |
|
|
""" |
|
|
_HOMEPAGE = "https://github.com/dxli94/WLASL" |
|
|
_REPO_URL = "https://huggingface.co/datasets/VieSignLang/wlasl100/resolve/main" |
|
|
_URLS = { |
|
|
"meta": f"{_REPO_URL}/WLASL_v0.3.json", |
|
|
"labels": f"{_REPO_URL}/folder2label_str.txt", |
|
|
"rgb_videos": f"{_REPO_URL}/WLASL100/*.zip", |
|
|
"rgb_frames": f"{_REPO_URL}/preprocessing" + "/{split}/frames/*.zip", |
|
|
"keypoint_frames": f"{_REPO_URL}/preprocessing" + "/{split}/pose/*.zip", |
|
|
} |
|
|
|
|
|
|
|
|
class WLASL100Config(datasets.BuilderConfig): |
|
|
"""WLASL100 configuration.""" |
|
|
|
|
|
def __init__(self, name, **kwargs): |
|
|
""" |
|
|
:param name: Name of subset. |
|
|
:param kwargs: Arguments. |
|
|
""" |
|
|
super(WLASL100Config, self).__init__( |
|
|
name=name, |
|
|
version=datasets.Version("1.0.0"), |
|
|
description=_DESCRIPTION, |
|
|
**kwargs, |
|
|
) |
|
|
|
|
|
|
|
|
class WLASL100(datasets.GeneratorBasedBuilder): |
|
|
"""WLASL100 dataset.""" |
|
|
BUILDER_CONFIGS = [ |
|
|
WLASL100Config(name="rgb_videos"), |
|
|
WLASL100Config(name="rgb_frames"), |
|
|
WLASL100Config(name="keypoint_frames"), |
|
|
] |
|
|
DEFAULT_CONFIG_NAME = "rgb_videos" |
|
|
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
|
features = datasets.Features({ |
|
|
"gloss": datasets.Value("string"), |
|
|
"bbox": datasets.Sequence(datasets.Value("int16")), |
|
|
"fps": datasets.Value("int8"), |
|
|
"frame_end": datasets.Value("int32"), |
|
|
"frame_start": datasets.Value("int32"), |
|
|
"instance_id": datasets.Value("int32"), |
|
|
"signer_id": datasets.Value("int32"), |
|
|
"source": datasets.Value("string"), |
|
|
"url": datasets.Value("string"), |
|
|
"variation_id": datasets.Value("int8"), |
|
|
"video_id": datasets.Value("int32"), |
|
|
"video": datasets.Value("string"), |
|
|
}) |
|
|
|
|
|
return datasets.DatasetInfo( |
|
|
description=_DESCRIPTION, |
|
|
features=features, |
|
|
homepage=_HOMEPAGE, |
|
|
citation=_CITATION, |
|
|
) |
|
|
|
|
|
def _split_generators( |
|
|
self, dl_manager: datasets.DownloadManager |
|
|
) -> list[datasets.SplitGenerator]: |
|
|
""" |
|
|
Get splits. |
|
|
|
|
|
Parameters |
|
|
---------- |
|
|
dl_manager : datasets.DownloadManager |
|
|
Download manager. |
|
|
|
|
|
Returns |
|
|
------- |
|
|
list[datasets.SplitGenerator] |
|
|
Splits. |
|
|
""" |
|
|
raw_df = pd.read_json(dl_manager.download(_URLS["meta"])).explode("instances") |
|
|
df = pd.concat( |
|
|
[ |
|
|
raw_df[["gloss"]].reset_index(drop=True), |
|
|
pd.json_normalize(raw_df.instances) |
|
|
], |
|
|
axis=1, |
|
|
) |
|
|
df = df.merge( |
|
|
pd.read_csv( |
|
|
dl_manager.download(_URLS["labels"]), |
|
|
sep=" ", |
|
|
names=["gloss_label", "gloss"], |
|
|
), |
|
|
on="gloss", how="right", |
|
|
) |
|
|
df["gloss_label"] = df["gloss_label"].astype(str) |
|
|
|
|
|
split_dict = { |
|
|
"train": datasets.Split.TRAIN, |
|
|
"test": datasets.Split.TEST, |
|
|
"val": datasets.Split.VALIDATION, |
|
|
} |
|
|
|
|
|
video_urls = _URLS["rgb_videos"] |
|
|
if self.config.name != "rgb_videos": |
|
|
split_dict.pop("val") |
|
|
video_urls = _URLS[self.config.name] |
|
|
|
|
|
return [ |
|
|
datasets.SplitGenerator( |
|
|
name=name, |
|
|
gen_kwargs={ |
|
|
"split_df": df[df.split == split].drop(columns=["split"]), |
|
|
"video_dirs": dl_manager.download_and_extract( |
|
|
glob(video_urls.format(split=split)) |
|
|
), |
|
|
}, |
|
|
) |
|
|
for split, name in split_dict.items() |
|
|
] |
|
|
|
|
|
def _generate_examples( |
|
|
self, split_df: str, |
|
|
video_dirs: list[str], |
|
|
) -> tuple[int, dict]: |
|
|
""" |
|
|
Generate examples from metadata. |
|
|
|
|
|
Parameters |
|
|
---------- |
|
|
split_df : str |
|
|
Split dataframe. |
|
|
video_dirs : list[str] |
|
|
List of video directories. |
|
|
|
|
|
Yields |
|
|
------ |
|
|
tuple[int, dict] |
|
|
Index and example. |
|
|
""" |
|
|
split = datasets.Dataset.from_pandas(split_df) |
|
|
|
|
|
for i, sample in enumerate(split): |
|
|
for video_dir in video_dirs: |
|
|
video_path = os.path.join(video_dir, sample["gloss_label"]) |
|
|
if self.config.name == "rgb_videos": |
|
|
video_path = os.path.join(video_path, sample["video_id"] + ".mp4") |
|
|
else: |
|
|
video_path = os.path.join(video_path, sample["video_id"], "*.jpg") |
|
|
|
|
|
if len(glob(video_path)) > 0: |
|
|
yield i, { |
|
|
"gloss": sample["gloss"], |
|
|
"bbox": sample["bbox"], |
|
|
"fps": sample["fps"], |
|
|
"frame_end": sample["frame_end"], |
|
|
"frame_start": sample["frame_start"], |
|
|
"instance_id": sample["instance_id"], |
|
|
"signer_id": sample["signer_id"], |
|
|
"source": sample["source"], |
|
|
"url": sample["url"], |
|
|
"variation_id": sample["variation_id"], |
|
|
"video_id": sample["video_id"], |
|
|
"video": video_path, |
|
|
} |
|
|
|