and the angular velocity is given by

. v/GMa(l —e?)

w - d2 .
In equations (1) and (2), assume (e) denotes an average in time over one orbit. For a function
w of ¢ this means that
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where
2ma’/?

T =
vGM

is the period of the orbit.

Assume that a and e do not change appreciably in one orbit, so that their time derivatives can
be ignored in the averages.

Question 2 Note that J; = Jo =0 (i.e., the x and y components of J vanish). Show

that
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and that
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where

1+ %62
gle) = m-

For Keplerian orbits we have
M

2a

E:

and

Js = /Gu2Ma(l — e2)
(J3 is usually denoted L).

Question 3 For Keplerian orbits prove that
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and that
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Under what conditions is it true that the time derivatives of a and e (as just calculated)
can be ignored in the averages in (1) and (2) (as was assumed above in deriving (3) and
(4))? (This is a consistency check.)
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