--- license: cc-by-4.0 tags: - climate - weather - extreme events - machine learning task_categories: - image-segmentation - image-to-image configs: - config_name: default data_files: - split: train path: - "data/weather/coldwave/coldwave_records.csv" - "data/weather/heatwave/heatwave_records.csv" - "data/weather/tropicalCyclone/tropicalCyclone_surface_records.csv" - "data/weather/expcp/expcp_metadata.csv" - "data/weather/storm/storm_metadata.csv" - "data/eo/fire/training/training_index.csv" - "data/eo/fire/flood/training_index.csv" - split: test path: - "data/weather/coldwave/coldwave_records_test.csv" - "data/weather/heatwave/heatwave_records_test.csv" - "data/weather/tropicalCyclone/tropicalCyclone_surface_records_test.csv" - "data/weather/expcp/expcp_metadata.csv" - "data/weather/storm/storm_metadata.csv" - "data/eo/fire/validation/validation_index.csv" - "data/eo/flood/validation/validation_index.csv" --- ## The ExEBench Datasets are collected from weather and earth observation data from diverse sources. | **Category** | **Heatwaves** | **Cold waves** | **Tropical cyclones** | **Storms** | **Extreme precipitation** | **Fires** | **Flood** | |------------------------|------------------------------------------|-------------------------------------------|------------------------------------------------------------------------|-------------------------------|---------------------------------------------|--------------------------------------------------------|-----------------------------------| | **Data type** | Weather | Weather | Weather |EO |EO |EO |EO | **Data source** | EmDat, ERA5, ISO-3 | EmDat, ERA5, ISO-3 | EmDat, ERA5, IBTrACSv04 | TASSRAD19 | TRMM 3B42 V7, IMERG half-hourly Final Run | HLS Burn Scars | UrbanSAR-Floods | | **Sensor/variable** | t₂m (max), land-, soil-, topography- masks| t₂m (min), land-, soil-, topography- masks| mslp, u10, v10; z, u, v at levels,land-, soil-, topography- masks | Radar prec. rate, noise mask | Precip Radar & TRMM Imager | Landsat/Sentinel-2, burn masks | Sentinel-1, flood masks | | **Spatial resolution** | 0.25° | 0.25° | 0.25° | 500 m | 0.1° | 30 m | 20 m | | **Temporal resolution**| Daily | Daily | Hourly | 5-minute | Half-hourly | N.A | N.A | | **Spatial coverage** | Global | Global | Tropics | Trentino South Tyrol | Global | Contiguous US | Global | | **Temporal coverage** | 2019–2023 | 2019–2023 | 2019 | 2010–2019 | 2020–2023 | 2018–2021 | 2016–2023 | | **Event number** | 55 | 9 | 95 | 931 | 1092 | N.A | 11 | | **Frame size** | CHW (C=4) | CHW (C=4) | CHW & CDHW (C=3, D=5) | LCHW (C=1, 480×480) | LCHW (C=1, 50×50) | CHW (6×512×512) | CHW (8×512×512) | | **Train split** | 4,844 | 338 | 12,993 | 810 | 796 | 540 | 405 | | **Test split** | 366 frames | 221 frames | 2,438 frames | 121 sequences | 296 sequences | 264 pairs | 285 pairs | | **Task** | Image-image prediction | Image-image prediction | Trajectory tracking | Video prediction | Video prediction | Segmentation | Segmentation (change detection) |