import argparse import time import datasets import torch from transformers import AutoModelForCausalLM, AutoTokenizer from transformers.generation import GenerationConfig MODEL_ID = "Qwen/Qwen3-4B-Instruct-2507" def main(): parser = argparse.ArgumentParser() parser.add_argument("--samples", type=int, default=100, help="Number of prompts to run") parser.add_argument("--batch-size", "-bs", type=int, default=32, help="Static batch size") parser.add_argument("--max-new-tokens", type=int, default=512, help="Max new tokens per request") parser.add_argument("--warmup", type=int, default=1, help="Warmup batches (excluded from timing)") args = parser.parse_args() # Load model (static batching, SDPA attention), BF16 for speed/memory model = AutoModelForCausalLM.from_pretrained( MODEL_ID, attn_implementation="sdpa", torch_dtype=torch.bfloat16, ).cuda().eval() # Tokenizer: left padding is typically better for batched causal LMs tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, padding_side="left") if tokenizer.pad_token_id is None: tokenizer.pad_token = tokenizer.eos_token # Dataset: GSM8K (socratic) questions only dataset = datasets.load_dataset("openai/gsm8k", "socratic", split="test") dataset = dataset.select(range(args.samples)) # Tokenize up front (no padding yet; we’ll pad per-batch for efficiency) encoded = tokenizer(list(dataset["question"]), padding=False, truncation=False) inputs = [{"input_ids": ids, "attention_mask": attn} for ids, attn in zip(encoded["input_ids"], encoded["attention_mask"])] # Generation config gen_cfg = GenerationConfig( do_sample=False, max_new_tokens=args.max_new_tokens, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.pad_token_id, use_cuda_graph=False, # keep simple/portable ) # Helper to create a padded batch on-device def make_batch(items): batch = tokenizer.pad(items, padding=True, return_tensors="pt") return {k: v.cuda(non_blocking=True) for k, v in batch.items()} # Optional warmup (excluded from timing) model_inputs = [] if args.warmup > 0: warm = make_batch(inputs[: min(len(inputs), args.batch_size * args.warmup)]) with torch.no_grad(): _ = model.generate(**warm, generation_config=gen_cfg) # Timed generation over all batches token_count = 0 bs = args.batch_size start = time.time() with torch.no_grad(): for i in range(0, len(inputs), bs): batch_items = inputs[i : i + bs] batch = make_batch(batch_items) # Run generate() outputs = model.generate(**batch, generation_config=gen_cfg) # Count newly generated tokens per sequence # new_tokens = (#non-pad tokens after the original prompt length) pad_id = tokenizer.pad_token_id input_lens = batch["attention_mask"].sum(dim=1).tolist() for row, in_len in zip(outputs, input_lens): seq = row.tolist() gen_part = seq[int(in_len):] token_count += sum(1 for t in gen_part if t != pad_id) end = time.time() elapsed = end - start tps = token_count / elapsed if elapsed > 0 else 0.0 print("-" * 20) print("--- Finished Static Batching Benchmark ---\n") print(f"Model: {MODEL_ID}") print(f"Attention: sdpa | Batch size: {args.batch_size} | Samples: {args.samples} | Max new tokens: {args.max_new_tokens}") print(f"Generation time (no warmup): {elapsed:.2f} s for {token_count} generated tokens -> {tps:.2f} tok/s") if __name__ == "__main__": main() #Attention: sdpa | Batch size: 32 | Samples: 100 | Max new tokens: 512 # Generation time (no warmup): 153.98 s for 53427 generated tokens -> 346.98 tok/s