from datasets import load_dataset import numpy as np import json import matplotlib.pyplot as plt data = load_dataset("rikeshsilwalekg/imeaudio", revision = "v3-output-audio-features", split="train") duration_values = [example['audio_features']['duration'] for example in data] ###########----------------__FOR DURATION__--------------------------------------######################## # Define bin width and bins for 0.5 seconds interval between 0 and 5 seconds bin_width = 0.5 min_duration = 25 max_duration = 30 bins = np.arange(min_duration, max_duration + bin_width, bin_width) # Filter data to only include durations between 0 and 5 seconds filtered_durations = duration_values[(duration_values >= min_duration) & (duration_values <= max_duration)] # Compute histogram data counts, bin_edges = np.histogram(filtered_durations, bins=bins) # Prepare dictionary with string keys for each bin range hist_dict = {} for i in range(len(counts)): key = f"{bin_edges[i]}-{bin_edges[i+1]}" hist_dict[key] = int(counts[i]) # Save histogram data to JSON file json_filename = "audio_duration_histtogram_25_30_seconds.json" with open(json_filename, "w") as f: json.dump(hist_dict, f, indent=2) # Plot histogram plt.hist(filtered_durations, bins=bins, color='purple', edgecolor='black') plt.title('Distribution of Audio Durations (25-30 seconds)') plt.xlabel('Duration in seconds') plt.ylabel('Count') plt.xlim(min_duration, max_duration) plt.savefig("/home/sidd/Desktop/work/IME DATASET REVIEW/audio_duration/AudioDurations0-5.jpg") plt.show() import numpy as np import json import matplotlib.pyplot as plt # Define bin width and bins for 0.5 seconds interval between 0 and 5 seconds bin_width = 0.5 min_duration = 0 max_duration = 5 bins = np.arange(min_duration, max_duration + bin_width, bin_width) # Filter data to only include durations between 0 and 5 seconds filtered_durations = duration_values[(duration_values >= min_duration) & (duration_values <= max_duration)] # Compute histogram data counts, bin_edges = np.histogram(filtered_durations, bins=bins) # Prepare dictionary with string keys for each bin range hist_dict = {} for i in range(len(counts)): key = f"{bin_edges[i]}-{bin_edges[i+1]}" hist_dict[key] = int(counts[i]) # Save histogram data to JSON file json_filename = "audio_duration_histtogram_0_51_seconds.json" with open(json_filename, "w") as f: json.dump(hist_dict, f, indent=2) # Plot histogram plt.hist(filtered_durations, bins=bins, color='purple', edgecolor='black') plt.title('Distribution of Audio Durations (0-5 seconds)') plt.xlabel('Duration in seconds') plt.ylabel('Count') plt.xlim(min_duration, max_duration) plt.savefig("/home/sidd/Desktop/work/IME DATASET REVIEW/audio_duration/AudioDurations0-5.jpg") plt.show() import numpy as np import json import matplotlib.pyplot as plt # Define bin width and bins for 0.5 seconds interval between 5 and 10 seconds bin_width = 0.5 min_duration = 5 max_duration = 10 bins = np.arange(min_duration, max_duration + bin_width, bin_width) # Ensure duration_values is a NumPy array duration_values = np.array(duration_values) # Filter data to only include durations between 5 and 10 seconds filtered_durations = duration_values[(duration_values >= min_duration) & (duration_values <= max_duration)] # Compute histogram data counts, bin_edges = np.histogram(filtered_durations, bins=bins) # Prepare dictionary with string keys for each bin range hist_dict = {} for i in range(len(counts)): key = f"{bin_edges[i]}-{bin_edges[i+1]}" hist_dict[key] = int(counts[i]) # Save histogram data to JSON file json_filename = "audio_duration_histogram_5_10_seconds.json" with open(json_filename, "w") as f: json.dump(hist_dict, f, indent=2) # Plot histogram plt.hist(filtered_durations, bins=bins, color='purple', edgecolor='black') plt.title('Distribution of Audio Durations (5-10 seconds)') plt.xlabel('Duration in seconds') plt.ylabel('Count') plt.xlim(min_duration, max_duration) plt.savefig("/home/sidd/Desktop/work/IME DATASET REVIEW/audio_duration/AudioDurations5-10.jpg") plt.show() import numpy as np import json import matplotlib.pyplot as plt # Define bin width and bins for 0.5 seconds interval between 5 and 10 seconds bin_width = 0.5 min_duration = 10 max_duration = 15 bins = np.arange(min_duration, max_duration + bin_width, bin_width) # Ensure duration_values is a NumPy array duration_values = np.array(duration_values) # Filter data to only include durations between 5 and 10 seconds filtered_durations = duration_values[(duration_values >= min_duration) & (duration_values <= max_duration)] # Compute histogram data counts, bin_edges = np.histogram(filtered_durations, bins=bins) # Prepare dictionary with string keys for each bin range hist_dict = {} for i in range(len(counts)): key = f"{bin_edges[i]}-{bin_edges[i+1]}" hist_dict[key] = int(counts[i]) # Save histogram data to JSON file json_filename = "audio_duration_histogram_10_15_seconds.json" with open(json_filename, "w") as f: json.dump(hist_dict, f, indent=2) # Plot histogram plt.hist(filtered_durations, bins=bins, color='purple', edgecolor='black') plt.title('Distribution of Audio Durations (10-15seconds)') plt.xlabel('Duration in seconds') plt.ylabel('Count') plt.xlim(min_duration, max_duration) plt.savefig("/home/sidd/Desktop/work/IME DATASET REVIEW/audio_duration/AudioDurations10-15.jpg") plt.show() import numpy as np import json import matplotlib.pyplot as plt # Example duration_values data (replace with your actual data) # duration_values = ... # Define bin width and bins for 0.5 seconds interval between 5 and 10 seconds bin_width = 0.5 min_duration = 15 max_duration = 20 bins = np.arange(min_duration, max_duration + bin_width, bin_width) # Ensure duration_values is a NumPy array duration_values = np.array(duration_values) # Filter data to only include durations between 10 and 15 seconds filtered_durations = duration_values[(duration_values >= min_duration) & (duration_values <= max_duration)] # Compute histogram data counts, bin_edges = np.histogram(filtered_durations, bins=bins) # Prepare dictionary with string keys for each bin range hist_dict = {} for i in range(len(counts)): key = f"{bin_edges[i]}-{bin_edges[i+1]}" hist_dict[key] = int(counts[i]) # Save histogram data to JSON file json_filename = "audio_duration_histogram_15_20_seconds.json" with open(json_filename, "w") as f: json.dump(hist_dict, f, indent=2) # Plot histogram plt.hist(filtered_durations, bins=bins, color='purple', edgecolor='black') plt.title('Distribution of Audio Durations (15-20 seconds)') plt.xlabel('Duration in seconds') plt.ylabel('Count') plt.xlim(min_duration, max_duration) plt.savefig("/home/sidd/Desktop/work/IME DATASET REVIEW/audio_duration/AudioDurations15-20.jpg") plt.show() import numpy as np import json import matplotlib.pyplot as plt # Example duration_values data (replace with your actual data) # duration_values = ... # Define bin width and bins for 0.5 seconds interval between 5 and 10 seconds bin_width = 0.5 min_duration = 20 max_duration = 25 bins = np.arange(min_duration, max_duration + bin_width, bin_width) # Ensure duration_values is a NumPy array duration_values = np.array(duration_values) # Filter data to only include durations between 10 and 15 seconds filtered_durations = duration_values[(duration_values >= min_duration) & (duration_values <= max_duration)] # Compute histogram data counts, bin_edges = np.histogram(filtered_durations, bins=bins) # Prepare dictionary with string keys for each bin range hist_dict = {} for i in range(len(counts)): key = f"{bin_edges[i]}-{bin_edges[i+1]}" hist_dict[key] = int(counts[i]) # Save histogram data to JSON file json_filename = "audio_duration_histogram_20_25_seconds.json" with open(json_filename, "w") as f: json.dump(hist_dict, f, indent=2) # Plot histogram plt.hist(filtered_durations, bins=bins, color='purple', edgecolor='black') plt.title('Distribution of Audio Durations (20-25 seconds)') plt.xlabel('Duration in seconds') plt.ylabel('Count') plt.xlim(min_duration, max_duration) plt.savefig("/home/sidd/Desktop/work/IME DATASET REVIEW/audio_duration/AudioDurations20-25.jpg") plt.show() # Define bin width and bins for 0.5 seconds interval between 5 and 10 seconds bin_width = 0.5 min_duration = 25 max_duration = 30 bins = np.arange(min_duration, max_duration + bin_width, bin_width) # Ensure duration_values is a NumPy array duration_values = np.array(duration_values) # Filter data to only include durations between 10 and 15 seconds filtered_durations = duration_values[(duration_values >= min_duration) & (duration_values <= max_duration)] # Compute histogram data counts, bin_edges = np.histogram(filtered_durations, bins=bins) # Prepare dictionary with string keys for each bin range hist_dict = {} for i in range(len(counts)): key = f"{bin_edges[i]}-{bin_edges[i+1]}" hist_dict[key] = int(counts[i]) # Save histogram data to JSON file json_filename = "audio_duration_histogram_25-30_seconds.json" with open(json_filename, "w") as f: json.dump(hist_dict, f, indent=2) # Plot histogram plt.hist(filtered_durations, bins=bins, color='purple', edgecolor='black') plt.title('Distribution of Audio Durations (20-25 seconds)') plt.xlabel('Duration in seconds') plt.ylabel('Count') plt.xlim(min_duration, max_duration) # plt.savefig("/home/sidd/Desktop/work/IME DATASET REVIEW/audio_duration//DynamicRangeLRA0-5.jpg") plt.show() ###########-----------------------------------------__FOR DYNAMIC_RANGE_LRA__-------------------------------------------------------------------######################## dynamic_range_lra = [example['audio_features']['dynamic_range_lra'] for example in data] bin_width = 0.5 min_duration = 0 max_duration = 5 # Ensure arrays are numpy arrays duration_values = np.array(duration_values) dynamic_range_lra_values = np.array(dynamic_range_lra) # Filter dynamic_range_lra for files with duration between 0 and 5 seconds filtered_dynamic_range_lra = dynamic_range_lra_values[ (duration_values >= min_duration) & (duration_values <= max_duration) ] # Define bins for dynamic_range_lra (0 to 30 in 0.5 steps) lra_bins = np.arange(0, 5 + bin_width, bin_width) # Compute histogram for filtered dynamic_range_lra counts, bin_edges = np.histogram(filtered_dynamic_range_lra, bins=lra_bins) # Prepare JSON output in requested format hist_dict = {} for i in range(len(counts)): key = f"{bin_edges[i]}-{bin_edges[i+1]}" hist_dict[key] = int(counts[i]) # Save to JSON json_filename = "dynamic_range_lra_histogram_0_5_seconds.json" with open(json_filename, "w") as f: json.dump(hist_dict, f, indent=2) # Plot plt.hist(filtered_dynamic_range_lra, bins=lra_bins, color='purple', edgecolor='black') plt.title('Distribution of Dynamic Range LRA (0-5 seconds duration)') plt.xlabel('Dynamic Range LRA') plt.ylabel('Count') plt.xlim(0, 5) plt.savefig("/home/sidd/Desktop/work/IME DATASET REVIEW/audio_duration//DynamicRangeLRA0-5.jpg") plt.show() # Define bin width and range for dynamic range LRA between 5-10 bin_width = 0.5 min_lra = 5 max_lra = 10 bins = np.arange(min_lra, max_lra + bin_width, bin_width) # Ensure data is in numpy arrays dynamic_range_lra_values = np.array(dynamic_range_lra) # Filter to only include dynamic range LRA values between 5-10 filtered_dynamic_range_lra = dynamic_range_lra_values[ (duration_values >= min_duration) & (duration_values <= max_duration)] # Compute histogram for the filtered values counts, bin_edges = np.histogram(filtered_dynamic_range_lra, bins=bins) # Prepare JSON with string keys hist_dict = {} for i in range(len(counts)): key = f"{bin_edges[i]}-{bin_edges[i+1]}" hist_dict[key] = int(counts[i]) # Save to JSON file json_filename = "dynamic_range_lra_histogram_5_10.json" with open(json_filename, "w") as f: json.dump(hist_dict, f, indent=2) # Plot histogram plt.hist(filtered_dynamic_range_lra, bins=bins, color='purple', edgecolor='black') plt.title('Distribution of Dynamic Range LRA (5-10)') plt.xlabel('Dynamic Range LRA') plt.ylabel('Count') plt.xlim(min_lra, max_lra) plt.savefig("/home/sidd/Desktop/work/IME DATASET REVIEW/audio_duration//DynamicRangeLRA5-10.jpg") plt.show() # Define bin width and range for dynamic range LRA between 10-15 bin_width = 0.5 min_lra = 10 max_lra = 15 bins = np.arange(min_lra, max_lra + bin_width, bin_width) # Ensure data is in numpy arrays dynamic_range_lra_values = np.array(dynamic_range_lra) # Filter to only include dynamic range LRA values between 10-15 filtered_dynamic_range_lra = dynamic_range_lra_values[ (duration_values >= min_duration) & (duration_values <= max_duration)] # Compute histogram for the filtered values counts, bin_edges = np.histogram(filtered_dynamic_range_lra, bins=bins) # Prepare JSON with string keys hist_dict = {} for i in range(len(counts)): key = f"{bin_edges[i]}-{bin_edges[i+1]}" hist_dict[key] = int(counts[i]) # Save to JSON file json_filename = "dynamic_range_lra_histogram_10_15.json" with open(json_filename, "w") as f: json.dump(hist_dict, f, indent=2) # Plot histogram plt.hist(filtered_dynamic_range_lra, bins=bins, color='purple', edgecolor='black') plt.title('Distribution of Dynamic Range LRA (10-15)') plt.xlabel('Dynamic Range LRA') plt.ylabel('Count') plt.xlim(min_lra, max_lra) plt.savefig("/home/sidd/Desktop/work/IME DATASET REVIEW/audio_duration//DynamicRangeLRA10-15.jpg") plt.show() # Define bin width and range for dynamic range LRA between 10-15 bin_width = 0.5 min_lra = 15 max_lra = 20 bins = np.arange(min_lra, max_lra + bin_width, bin_width) # Ensure data is in numpy arrays dynamic_range_lra_values = np.array(dynamic_range_lra) # Filter to only include dynamic range LRA values between 10-15 filtered_dynamic_range_lra = dynamic_range_lra_values[ (duration_values >= min_duration) & (duration_values <= max_duration)] # Compute histogram for the filtered values counts, bin_edges = np.histogram(filtered_dynamic_range_lra, bins=bins) # Prepare JSON with string keys hist_dict = {} for i in range(len(counts)): key = f"{bin_edges[i]}-{bin_edges[i+1]}" hist_dict[key] = int(counts[i]) # Save to JSON file json_filename = "dynamic_range_lra_histogram_15_20.json" with open(json_filename, "w") as f: json.dump(hist_dict, f, indent=2) # Plot histogram plt.hist(filtered_dynamic_range_lra, bins=bins, color='purple', edgecolor='black') plt.title('Distribution of Dynamic Range LRA (15-20)') plt.xlabel('Dynamic Range LRA') plt.ylabel('Count') plt.xlim(min_lra, max_lra) plt.savefig("/home/sidd/Desktop/work/IME DATASET REVIEW/audio_duration//DynamicRangeLRA15-20.jpg") plt.show() # Define bin width and range for dynamic range LRA between 10-15 bin_width = 0.5 min_lra = 20 max_lra = 25 bins = np.arange(min_lra, max_lra + bin_width, bin_width) # Ensure data is in numpy arrays dynamic_range_lra_values = np.array(dynamic_range_lra) # Filter to only include dynamic range LRA values between 10-15 filtered_dynamic_range_lra = dynamic_range_lra_values[ (duration_values >= min_duration) & (duration_values <= max_duration)] # Compute histogram for the filtered values counts, bin_edges = np.histogram(filtered_dynamic_range_lra, bins=bins) # Prepare JSON with string keys hist_dict = {} for i in range(len(counts)): key = f"{bin_edges[i]}-{bin_edges[i+1]}" hist_dict[key] = int(counts[i]) # Save to JSON file json_filename = "dynamic_range_lra_histogram_20_25.json" with open(json_filename, "w") as f: json.dump(hist_dict, f, indent=2) # Plot histogram plt.hist(filtered_dynamic_range_lra, bins=bins, color='purple', edgecolor='black') plt.title('Distribution of Dynamic Range LRA (20-25)') plt.xlabel('Dynamic Range LRA') plt.ylabel('Count') plt.xlim(min_lra, max_lra) plt.savefig("/home/sidd/Desktop/work/IME DATASET REVIEW/audio_duration//DynamicRangeLRA20-25.jpg") plt.show() # Define bin width and range for dynamic range LRA between 10-15 bin_width = 0.5 min_lra = 25 max_lra = 30 bins = np.arange(min_lra, max_lra + bin_width, bin_width) # Ensure data is in numpy arrays dynamic_range_lra_values = np.array(dynamic_range_lra) # Filter to only include dynamic range LRA values between 10-15 filtered_dynamic_range_lra = dynamic_range_lra_values[ (duration_values >= min_duration) & (duration_values <= max_duration)] # Compute histogram for the filtered values counts, bin_edges = np.histogram(filtered_dynamic_range_lra, bins=bins) # Prepare JSON with string keys hist_dict = {} for i in range(len(counts)): key = f"{bin_edges[i]}-{bin_edges[i+1]}" hist_dict[key] = int(counts[i]) # Save to JSON file json_filename = "dynamic_range_lra_histogram_25-30.json" with open(json_filename, "w") as f: json.dump(hist_dict, f, indent=2) # Plot histogram plt.hist(filtered_dynamic_range_lra, bins=bins, color='purple', edgecolor='black') plt.title('Distribution of Dynamic Range LRA (25-30)') plt.xlabel('Dynamic Range LRA') plt.ylabel('Count') plt.xlim(min_lra, max_lra) plt.savefig("/home/sidd/Desktop/work/IME DATASET REVIEW/audio_duration//DynamicRangeLRA25-30.jpg") plt.show() ##################-------------------------------------FOR LOUDNESS LUFFS----------------------------------------------------------------------#################### loudness_lufs = [example['audio_features']['loudness_lufs'] for example in data] # Convert to numpy arrays duration_array = np.array(duration_values) loudness_array = np.array(loudness_lufs) # Define duration bins (0 to 5 seconds, 0.5s intervals) bin_width = 0.5 min_duration = 0 max_duration = 5 bins = np.arange(min_duration, max_duration + bin_width, bin_width) # Prepare results loudness_per_duration_bin = {} x_labels = [] y_values = [] # Loop through bins and compute average loudness for i in range(len(bins) - 1): start = bins[i] end = bins[i + 1] # Mask for samples in the duration bin mask = (duration_array >= start) & (duration_array < end) loudness_in_bin = loudness_array[mask] # Remove NaNsplt.savefig("/home/sidd/Desktop/work/IME DATASET REVIEW/audio_duration/Dynamic-Range-LRA0-5.jpg") loudness_in_bin = loudness_in_bin[~np.isnan(loudness_in_bin)] # Calculate mean loudness if len(loudness_in_bin) > 0: avg_loudness = float(np.mean(loudness_in_bin)) else: avg_loudness = None # Save results key = f"{start}-{end}" loudness_per_duration_bin[key] = avg_loudness x_labels.append(key) y_values.append(avg_loudness if avg_loudness is not None else 0) # Save to JSON json_filename = "avg_loudness_lufs_per_duration_bin.json" with open(json_filename, "w") as f: json.dump(loudness_per_duration_bin, f, indent=2) # Plot histogram-style bar chart plt.figure(figsize=(10, 6)) plt.bar(x_labels, y_values, color='teal', edgecolor='black') plt.xticks(rotation=45) plt.xlabel("Duration Bin (seconds)") plt.ylabel("Average Loudness (LUFS)") plt.title("Average Loudness per Duration Bin (0–5 sec)") plt.grid(axis='y') plt.tight_layout() plt.savefig("/home/sidd/Desktop/work/IME DATASET REVIEW/audio_duration/loudness0-5.jpg") plt.show() # Convert to numpy arrays duration_array = np.array(duration_values) loudness_array = np.array(loudness_lufs) # Define duration bins (0 to 5 seconds, 0.5s intervals) bin_width = 0.5 min_duration = 5 max_duration = 10 bins = np.arange(min_duration, max_duration + bin_width, bin_width) # Prepare results loudness_per_duration_bin = {} x_labels = [] y_values = [] # Loop through bins and compute average loudness for i in range(len(bins) - 1): start = bins[i] end = bins[i + 1] # Mask for samples in the duration bin mask = (duration_array >= start) & (duration_array < end) loudness_in_bin = loudness_array[mask] # Remove NaNs loudness_in_bin = loudness_in_bin[~np.isnan(loudness_in_bin)] # Calculate mean loudness if len(loudness_in_bin) > 0: avg_loudness = float(np.mean(loudness_in_bin)) else: avg_loudness = None # Save results key = f"{start}-{end}" loudness_per_duration_bin[key] = avg_loudness x_labels.append(key) y_values.append(avg_loudness if avg_loudness is not None else 0) # Save to JSON json_filename = "avg_loudness_lufs_per_duration5-10_bin.json" with open(json_filename, "w") as f: json.dump(loudness_per_duration_bin, f, indent=2) # Plot histogram-style bar chart plt.figure(figsize=(10, 6)) plt.bar(x_labels, y_values, color='teal', edgecolor='black') plt.xticks(rotation=45) plt.xlabel("Duration Bin (seconds)") plt.ylabel("Average Loudness (LUFS)") plt.title("Average Loudness per Duration Bin (5-10 sec)") plt.grid(axis='y') plt.tight_layout() plt.savefig("/home/sidd/Desktop/work/IME DATASET REVIEW/audio_duration/loudness5-10.jpg") plt.show() # Convert to numpy arrays duration_array = np.array(duration_values) loudness_array = np.array(loudness_lufs) # Define duration bins (0 to 5 seconds, 0.5s intervals) bin_width = 0.5 min_duration = 10 max_duration = 15 bins = np.arange(min_duration, max_duration + bin_width, bin_width) # Prepare results loudness_per_duration_bin = {} x_labels = [] y_values = [] # Loop through bins and compute average loudness for i in range(len(bins) - 1): start = bins[i] end = bins[i + 1] # Mask for samples in the duration bin mask = (duration_array >= start) & (duration_array < end) loudness_in_bin = loudness_array[mask] # Remove NaNs loudness_in_bin = loudness_in_bin[~np.isnan(loudness_in_bin)] # Calculate mean loudness if len(loudness_in_bin) > 0: avg_loudness = float(np.mean(loudness_in_bin)) else: avg_loudness = None # Save results key = f"{start}-{end}" loudness_per_duration_bin[key] = avg_loudness x_labels.append(key) y_values.append(avg_loudness if avg_loudness is not None else 0) # Save to JSON json_filename = "avg_loudness_lufs_per_duration10-15_bin.json" with open(json_filename, "w") as f: json.dump(loudness_per_duration_bin, f, indent=2) # Plot histogram-style bar chart plt.figure(figsize=(10, 6)) plt.bar(x_labels, y_values, color='teal', edgecolor='black') plt.xticks(rotation=45) plt.xlabel("Duration Bin (seconds)") plt.ylabel("Average Loudness (LUFS)") plt.title("Average Loudness per Duration Bin (10-15 sec)") plt.grid(axis='y') plt.tight_layout() plt.savefig("/home/sidd/Desktop/work/IME DATASET REVIEW/audio_duration/loudness10-15.jpg") plt.show() # Convert to numpy arrays duration_array = np.array(duration_values) loudness_array = np.array(loudness_lufs) # Define duration bins (0 to 5 seconds, 0.5s intervals) bin_width = 0.5 min_duration = 15 max_duration = 20 bins = np.arange(min_duration, max_duration + bin_width, bin_width) # Prepare results loudness_per_duration_bin = {} x_labels = [] y_values = [] # Loop through bins and compute average loudness for i in range(len(bins) - 1): start = bins[i] end = bins[i + 1] # Mask for samples in the duration bin mask = (duration_array >= start) & (duration_array < end) loudness_in_bin = loudness_array[mask] # Remove NaNs loudness_in_bin = loudness_in_bin[~np.isnan(loudness_in_bin)] # Calculate mean loudness if len(loudness_in_bin) > 0: avg_loudness = float(np.mean(loudness_in_bin)) else: avg_loudness = None # Save results key = f"{start}-{end}" loudness_per_duration_bin[key] = avg_loudness x_labels.append(key) y_values.append(avg_loudness if avg_loudness is not None else 0) # Save to JSON json_filename = "avg_loudness_lufs_per_duration15-20_bin.json" with open(json_filename, "w") as f: json.dump(loudness_per_duration_bin, f, indent=2) # Plot histogram-style bar chart plt.figure(figsize=(10, 6)) plt.bar(x_labels, y_values, color='teal', edgecolor='black') plt.xticks(rotation=45) plt.xlabel("Duration Bin (seconds)") plt.ylabel("Average Loudness (LUFS)") plt.title("Average Loudness per Duration Bin (15-20sec)") plt.grid(axis='y') plt.tight_layout() plt.savefig("/home/sidd/Desktop/work/IME DATASET REVIEW/audio_duration/loudness15-20.jpg") plt.show() # Convert to numpy arrays duration_array = np.array(duration_values) loudness_array = np.array(loudness_lufs) # Define duration bins (0 to 5 seconds, 0.5s intervals) bin_width = 0.5 min_duration = 20 max_duration = 25 bins = np.arange(min_duration, max_duration + bin_width, bin_width) # Prepare results loudness_per_duration_bin = {} x_labels = [] y_values = [] # Loop through bins and compute average loudness for i in range(len(bins) - 1): start = bins[i] end = bins[i + 1] # Mask for samples in the duration bin mask = (duration_array >= start) & (duration_array < end) loudness_in_bin = loudness_array[mask] # Remove NaNs loudness_in_bin = loudness_in_bin[~np.isnan(loudness_in_bin)] # Calculate mean loudness if len(loudness_in_bin) > 0: avg_loudness = float(np.mean(loudness_in_bin)) else: avg_loudness = None # Save results key = f"{start}-{end}" loudness_per_duration_bin[key] = avg_loudness x_labels.append(key) y_values.append(avg_loudness if avg_loudness is not None else 0) # Save to JSON json_filename = "avg_loudness_lufs_per_duration20-25_bin.json" with open(json_filename, "w") as f: json.dump(loudness_per_duration_bin, f, indent=2) # Plot histogram-style bar chart plt.figure(figsize=(10, 6)) plt.bar(x_labels, y_values, color='teal', edgecolor='black') plt.xticks(rotation=45) plt.xlabel("Duration Bin (seconds)") plt.ylabel("Average Loudness (LUFS)") plt.title("Average Loudness per Duration Bin (20-25sec)") plt.grid(axis='y') plt.tight_layout() plt.savefig("/home/sidd/Desktop/work/IME DATASET REVIEW/audio_duration/loudness20-25.jpg") plt.show() # Convert to numpy arrays duration_array = np.array(duration_values) loudness_array = np.array(loudness_lufs) # Define duration bins (0 to 5 seconds, 0.5s intervals) bin_width = 0.5 min_duration = 25 max_duration = 30 bins = np.arange(min_duration, max_duration + bin_width, bin_width) # Prepare results loudness_per_duration_bin = {} x_labels = [] y_values = [] # Loop through bins and compute average loudness for i in range(len(bins) - 1): start = bins[i] end = bins[i + 1] # Mask for samples in the duration bin mask = (duration_array >= start) & (duration_array < end) loudness_in_bin = loudness_array[mask] # Remove NaNs loudness_in_bin = loudness_in_bin[~np.isnan(loudness_in_bin)] # Calculate mean loudness if len(loudness_in_bin) > 0: avg_loudness = float(np.mean(loudness_in_bin)) else: avg_loudness = None # Save results key = f"{start}-{end}" loudness_per_duration_bin[key] = avg_loudness x_labels.append(key) y_values.append(avg_loudness if avg_loudness is not None else 0) # Save to JSON json_filename = "avg_loudness_lufs_per_duration25-30_bin.json" with open(json_filename, "w") as f: json.dump(loudness_per_duration_bin, f, indent=2) # Plot histogram-style bar chart plt.figure(figsize=(10, 6)) plt.bar(x_labels, y_values, color='teal', edgecolor='black') plt.xticks(rotation=45) plt.xlabel("Duration Bin (seconds)") plt.ylabel("Average Loudness (LUFS)") plt.title("Average Loudness per Duration Bin (25-30sec)") plt.grid(axis='y') plt.tight_layout() plt.savefig("/home/sidd/Desktop/work/IME DATASET REVIEW/audio_duration/loudness25-30.jpg") plt.show() ##########-------------------------AVERAGE MEAN f0--------------------------------------------__############################################# mean_f0_hz = [example['audio_features']['mean_f0_hz'] for example in data] # Clean your data: convert to float or np.nan cleaned_f0 = [float(x) if isinstance(x, (int, float)) and x is not None else np.nan for x in mean_f0_hz] f0_array = np.array(cleaned_f0, dtype=np.float32) # Also clean durations to match cleaned_durations = [float(x) if isinstance(x, (int, float)) and x is not None else np.nan for x in duration_values] duration_array = np.array(cleaned_durations, dtype=np.float32) # Define duration bins bin_width = 0.5 min_duration = 0 max_duration = 5 bins = np.arange(min_duration, max_duration + bin_width, bin_width) # Prepare results f0_per_duration_bin = {} x_labels = [] y_values = [] # Loop through each bin for i in range(len(bins) - 1): start = bins[i] end = bins[i + 1] # Mask valid values only mask = (duration_array >= start) & (duration_array < end) & ~np.isnan(f0_array) f0_in_bin = f0_array[mask] avg_f0 = float(np.mean(f0_in_bin)) if len(f0_in_bin) > 0 else None key = f"{start}-{end}" f0_per_duration_bin[key] = avg_f0 x_labels.append(key) y_values.append(avg_f0 if avg_f0 is not None else 0) # Save to JSON json_filename = "avg_mean_f0_hz_per_duration0-5_bin.json" with open(json_filename, "w") as f: json.dump(f0_per_duration_bin, f, indent=2) # Plot plt.figure(figsize=(10, 6)) plt.bar(x_labels, y_values, color='salmon', edgecolor='black') plt.xticks(rotation=45) plt.xlabel("Duration Bin (seconds)") plt.ylabel("Average Mean F0 (Hz)") plt.title("Average Mean F0 per Duration Bin (0–5 sec)") plt.grid(axis='y') plt.tight_layout() plt.savefig("/home/sidd/Desktop/work/IME DATASET REVIEW/audio_duration/AvgMeanF0:0-5.jpg") plt.show() # Clean your data: convert to float or np.nan cleaned_f0 = [float(x) if isinstance(x, (int, float)) and x is not None else np.nan for x in mean_f0_hz] f0_array = np.array(cleaned_f0, dtype=np.float32) # Also clean durations to match cleaned_durations = [float(x) if isinstance(x, (int, float)) and x is not None else np.nan for x in duration_values] duration_array = np.array(cleaned_durations, dtype=np.float32) # Define duration bins bin_width = 0.5 min_duration = 5 max_duration = 10 bins = np.arange(min_duration, max_duration + bin_width, bin_width) # Prepare results f0_per_duration_bin = {} x_labels = [] y_values = [] # Loop through each bin for i in range(len(bins) - 1): start = bins[i] end = bins[i + 1] # Mask valid values only mask = (duration_array >= start) & (duration_array < end) & ~np.isnan(f0_array) f0_in_bin = f0_array[mask] avg_f0 = float(np.mean(f0_in_bin)) if len(f0_in_bin) > 0 else None key = f"{start}-{end}" f0_per_duration_bin[key] = avg_f0 x_labels.append(key) y_values.append(avg_f0 if avg_f0 is not None else 0) # Save to JSON json_filename = "avg_mean_f0_hz_per_duration5-10_bin.json" with open(json_filename, "w") as f: json.dump(f0_per_duration_bin, f, indent=2) # Plot plt.figure(figsize=(10, 6)) plt.bar(x_labels, y_values, color='salmon', edgecolor='black') plt.xticks(rotation=45) plt.xlabel("Duration Bin (seconds)") plt.ylabel("Average Mean F0 (Hz)") plt.title("Average Mean F0 per Duration Bin (5-10 sec)") plt.grid(axis='y') plt.tight_layout() plt.savefig("/home/sidd/Desktop/work/IME DATASET REVIEW/audio_duration/AvgMeanF0:5-10.jpg") plt.show() # Clean your data: convert to float or np.nan cleaned_f0 = [float(x) if isinstance(x, (int, float)) and x is not None else np.nan for x in mean_f0_hz] f0_array = np.array(cleaned_f0, dtype=np.float32) # Also clean durations to match cleaned_durations = [float(x) if isinstance(x, (int, float)) and x is not None else np.nan for x in duration_values] duration_array = np.array(cleaned_durations, dtype=np.float32) # Define duration bins bin_width = 0.5 min_duration = 10 max_duration = 15 bins = np.arange(min_duration, max_duration + bin_width, bin_width) # Prepare results f0_per_duration_bin = {} x_labels = [] y_values = [] # Loop through each bin for i in range(len(bins) - 1): start = bins[i] end = bins[i + 1] # Mask valid values only mask = (duration_array >= start) & (duration_array < end) & ~np.isnan(f0_array) f0_in_bin = f0_array[mask] avg_f0 = float(np.mean(f0_in_bin)) if len(f0_in_bin) > 0 else None key = f"{start}-{end}" f0_per_duration_bin[key] = avg_f0 x_labels.append(key) y_values.append(avg_f0 if avg_f0 is not None else 0) # Save to JSON json_filename = "avg_mean_f0_hz_per_duration10-15_bin.json" with open(json_filename, "w") as f: json.dump(f0_per_duration_bin, f, indent=2) # Plot plt.figure(figsize=(10, 6)) plt.bar(x_labels, y_values, color='salmon', edgecolor='black') plt.xticks(rotation=45) plt.xlabel("Duration Bin (seconds)") plt.ylabel("Average Mean F0 (Hz)") plt.title("Average Mean F0 per Duration Bin (10-15 sec)") plt.grid(axis='y') plt.tight_layout() plt.savefig("/home/sidd/Desktop/work/IME DATASET REVIEW/audio_duration/AvgMeanF0:10-15.jpg") plt.show() # Clean your data: convert to float or np.nan cleaned_f0 = [float(x) if isinstance(x, (int, float)) and x is not None else np.nan for x in mean_f0_hz] f0_array = np.array(cleaned_f0, dtype=np.float32) # Also clean durations to match cleaned_durations = [float(x) if isinstance(x, (int, float)) and x is not None else np.nan for x in duration_values] duration_array = np.array(cleaned_durations, dtype=np.float32) # Define duration bins bin_width = 0.5 min_duration = 15 max_duration = 20 bins = np.arange(min_duration, max_duration + bin_width, bin_width) # Prepare results f0_per_duration_bin = {} x_labels = [] y_values = [] # Loop through each bin for i in range(len(bins) - 1): start = bins[i] end = bins[i + 1] # Mask valid values only mask = (duration_array >= start) & (duration_array < end) & ~np.isnan(f0_array) f0_in_bin = f0_array[mask] avg_f0 = float(np.mean(f0_in_bin)) if len(f0_in_bin) > 0 else None key = f"{start}-{end}" f0_per_duration_bin[key] = avg_f0 x_labels.append(key) y_values.append(avg_f0 if avg_f0 is not None else 0) # Save to JSON json_filename = "avg_mean_f0_hz_per_duration_bin15-20.json" with open(json_filename, "w") as f: json.dump(f0_per_duration_bin, f, indent=2) # Plot plt.figure(figsize=(10, 6)) plt.bar(x_labels, y_values, color='salmon', edgecolor='black') plt.xticks(rotation=45) plt.xlabel("Duration Bin (seconds)") plt.ylabel("Average Mean F0 (Hz)") plt.title("Average Mean F0 per Duration Bin (15-20 sec)") plt.grid(axis='y') plt.tight_layout() plt.savefig("/home/sidd/Desktop/work/IME DATASET REVIEW/audio_duration/AvgMeanF0:15-20.jpg") plt.show() # Clean your data: convert to float or np.nan cleaned_f0 = [float(x) if isinstance(x, (int, float)) and x is not None else np.nan for x in mean_f0_hz] f0_array = np.array(cleaned_f0, dtype=np.float32) # Also clean durations to match cleaned_durations = [float(x) if isinstance(x, (int, float)) and x is not None else np.nan for x in duration_values] duration_array = np.array(cleaned_durations, dtype=np.float32) # Define duration bins bin_width = 0.5 min_duration = 20 max_duration = 25 bins = np.arange(min_duration, max_duration + bin_width, bin_width) # Prepare results f0_per_duration_bin = {} x_labels = [] y_values = [] # Loop through each bin for i in range(len(bins) - 1): start = bins[i] end = bins[i + 1] # Mask valid values only mask = (duration_array >= start) & (duration_array < end) & ~np.isnan(f0_array) f0_in_bin = f0_array[mask] avg_f0 = float(np.mean(f0_in_bin)) if len(f0_in_bin) > 0 else None key = f"{start}-{end}" f0_per_duration_bin[key] = avg_f0 x_labels.append(key) y_values.append(avg_f0 if avg_f0 is not None else 0) # Save to JSON json_filename = "avg_mean_f0_hz_per_duration20-25_bin.json" with open(json_filename, "w") as f: json.dump(f0_per_duration_bin, f, indent=2) # Plot plt.figure(figsize=(10, 6)) plt.bar(x_labels, y_values, color='salmon', edgecolor='black') plt.xticks(rotation=45) plt.xlabel("Duration Bin (seconds)") plt.ylabel("Average Mean F0 (Hz)") plt.title("Average Mean F0 per Duration Bin (20-25 sec)") plt.grid(axis='y') plt.tight_layout() plt.savefig("/home/sidd/Desktop/work/IME DATASET REVIEW/audio_duration/AvgMeanF0:20-25.jpg") plt.show() # Clean your data: convert to float or np.nan cleaned_f0 = [float(x) if isinstance(x, (int, float)) and x is not None else np.nan for x in mean_f0_hz] f0_array = np.array(cleaned_f0, dtype=np.float32) # Also clean durations to match cleaned_durations = [float(x) if isinstance(x, (int, float)) and x is not None else np.nan for x in duration_values] duration_array = np.array(cleaned_durations, dtype=np.float32) # Define duration bins bin_width = 0.5 min_duration = 25 max_duration = 30 bins = np.arange(min_duration, max_duration + bin_width, bin_width) # Prepare results f0_per_duration_bin = {} x_labels = [] y_values = [] # Loop through each bin for i in range(len(bins) - 1): start = bins[i] end = bins[i + 1] # Mask valid values only mask = (duration_array >= start) & (duration_array < end) & ~np.isnan(f0_array) f0_in_bin = f0_array[mask] avg_f0 = float(np.mean(f0_in_bin)) if len(f0_in_bin) > 0 else None key = f"{start}-{end}" f0_per_duration_bin[key] = avg_f0 x_labels.append(key) y_values.append(avg_f0 if avg_f0 is not None else 0) # Save to JSON json_filename = "avg_mean_f0_hz_per_duration25-30_bin.json" with open(json_filename, "w") as f: json.dump(f0_per_duration_bin, f, indent=2) # Plot plt.figure(figsize=(10, 6)) plt.bar(x_labels, y_values, color='salmon', edgecolor='black') plt.xticks(rotation=45) plt.xlabel("Duration Bin (seconds)") plt.ylabel("Average Mean F0 (Hz)") plt.title("Average Mean F0 per Duration Bin (25-30 sec)") plt.grid(axis='y') plt.tight_layout() plt.savefig("/home/sidd/Desktop/work/IME DATASET REVIEW/audio_duration/AvgMeanF0:25-30.jpg") plt.show() ########################--------------------------------__MEAN SPECTRAL_CENTROID--------------------------------------------------------____#########################3 mean_spectral_centroid_hz = [example['audio_features']['mean_spectral_centroid_hz'] for example in data] # Clean spectral centroid values cleaned_centroid = [ float(x) if isinstance(x, (int, float)) and x is not None else np.nan for x in mean_spectral_centroid_hz ] centroid_array = np.array(cleaned_centroid, dtype=np.float32) # Clean duration values cleaned_durations = [ float(x) if isinstance(x, (int, float)) and x is not None else np.nan for x in duration_values ] duration_array = np.array(cleaned_durations, dtype=np.float32) # Define duration bins (0–5s with 0.5s step) bin_width = 0.5 min_duration = 0 max_duration = 5 bins = np.arange(min_duration, max_duration + bin_width, bin_width) # Compute average per bin centroid_per_bin = {} x_labels = [] y_values = [] for i in range(len(bins) - 1): start = bins[i] end = bins[i + 1] # Filter valid entries mask = (duration_array >= start) & (duration_array < end) & ~np.isnan(centroid_array) values_in_bin = centroid_array[mask] avg_centroid = float(np.mean(values_in_bin)) if len(values_in_bin) > 0 else None key = f"{start}-{end}" centroid_per_bin[key] = avg_centroid x_labels.append(key) y_values.append(avg_centroid if avg_centroid is not None else 0) # Save to JSON json_filename = "avg_mean_spectral_centroid_hz_per_duration0-5_bin.json" with open(json_filename, "w") as f: json.dump(centroid_per_bin, f, indent=2) # Plot plt.figure(figsize=(10, 6)) plt.bar(x_labels, y_values, color='royalblue', edgecolor='black') plt.xticks(rotation=45) plt.xlabel("Duration Bin (seconds)") plt.ylabel("Average Spectral Centroid (Hz)") plt.title("Average Spectral Centroid per Duration Bin (0–5 sec)") plt.grid(axis='y') plt.tight_layout() plt.savefig("/home/sidd/Desktop/work/IME DATASET REVIEW/audio_duration/AverageSpectral0-5.jpg") plt.show() # Clean spectral centroid values cleaned_centroid = [ float(x) if isinstance(x, (int, float)) and x is not None else np.nan for x in mean_spectral_centroid_hz ] centroid_array = np.array(cleaned_centroid, dtype=np.float32) # Clean duration values cleaned_durations = [ float(x) if isinstance(x, (int, float)) and x is not None else np.nan for x in duration_values ] duration_array = np.array(cleaned_durations, dtype=np.float32) # Define duration bins (0–5s with 0.5s step) bin_width = 0.5 min_duration = 5 max_duration = 10 bins = np.arange(min_duration, max_duration + bin_width, bin_width) # Compute average per bin centroid_per_bin = {} x_labels = [] y_values = [] for i in range(len(bins) - 1): start = bins[i] end = bins[i + 1] # Filter valid entries mask = (duration_array >= start) & (duration_array < end) & ~np.isnan(centroid_array) values_in_bin = centroid_array[mask] avg_centroid = float(np.mean(values_in_bin)) if len(values_in_bin) > 0 else None key = f"{start}-{end}" centroid_per_bin[key] = avg_centroid x_labels.append(key) y_values.append(avg_centroid if avg_centroid is not None else 0) # Save to JSON json_filename = "avg_mean_spectral_centroid_hz_per_duration5-10_bin.json" with open(json_filename, "w") as f: json.dump(centroid_per_bin, f, indent=2) # Plot plt.figure(figsize=(10, 6)) plt.bar(x_labels, y_values, color='royalblue', edgecolor='black') plt.xticks(rotation=45) plt.xlabel("Duration Bin (seconds)") plt.ylabel("Average Spectral Centroid (Hz)") plt.title("Average Spectral Centroid per Duration Bin (5-10 sec)") plt.grid(axis='y') plt.tight_layout() plt.savefig("/home/sidd/Desktop/work/IME DATASET REVIEW/audio_duration/AverageSpectral5-10.jpg") plt.show() # Clean spectral centroid values cleaned_centroid = [ float(x) if isinstance(x, (int, float)) and x is not None else np.nan for x in mean_spectral_centroid_hz ] centroid_array = np.array(cleaned_centroid, dtype=np.float32) # Clean duration values cleaned_durations = [ float(x) if isinstance(x, (int, float)) and x is not None else np.nan for x in duration_values ] duration_array = np.array(cleaned_durations, dtype=np.float32) # Define duration bins (0–5s with 0.5s step) bin_width = 0.5 min_duration = 10 max_duration = 15 bins = np.arange(min_duration, max_duration + bin_width, bin_width) # Compute average per bin centroid_per_bin = {} x_labels = [] y_values = [] for i in range(len(bins) - 1): start = bins[i] end = bins[i + 1] # Filter valid entrieplt.savefig("/home/sidd/Desktop/work/IME DATASET REVIEW/audio_duration/AverageSpectral0-5.jpg")s mask = (duration_array >= start) & (duration_array < end) & ~np.isnan(centroid_array) values_in_bin = centroid_array[mask] avg_centroid = float(np.mean(values_in_bin)) if len(values_in_bin) > 0 else None key = f"{start}-{end}" centroid_per_bin[key] = avg_centroid x_labels.append(key) y_values.append(avg_centroid if avg_centroid is not None else 0) # Save to JSON json_filename = "avg_mean_spectral_centroid_hz_per_duration10-15_bin.json" with open(json_filename, "w") as f: json.dump(centroid_per_bin, f, indent=2) # Plot plt.figure(figsize=(10, 6)) plt.bar(x_labels, y_values, color='royalblue', edgecolor='black') plt.xticks(rotation=45) plt.xlabel("Duration Bin (seconds)") plt.ylabel("Average Spectral Centroid (Hz)") plt.title("Average Spectral Centroid per Duration Bin (10-15) sec)") plt.grid(axis='y') plt.tight_layout() plt.savefig("/home/sidd/Desktop/work/IME DATASET REVIEW/audio_duration/AverageSpectral10-15.jpg") plt.show() # Clean spectral centroid values cleaned_centroid = [ float(x) if isinstance(x, (int, float)) and x is not None else np.nan for x in mean_spectral_centroid_hz ] centroid_array = np.array(cleaned_centroid, dtype=np.float32) # Clean duration values cleaned_durations = [ float(x) if isinstance(x, (int, float)) and x is not None else np.nan for x in duration_values ] duration_array = np.array(cleaned_durations, dtype=np.float32) # Define duration bins (0–5s with 0.5s step) bin_width = 0.5 min_duration = 15 max_duration = 20 bins = np.arange(min_duration, max_duration + bin_width, bin_width) # Compute average per bin centroid_per_bin = {} x_labels = [] y_values = [] for i in range(len(bins) - 1): start = bins[i] end = bins[i + 1] # Filter valid entries mask = (duration_array >= start) & (duration_array < end) & ~np.isnan(centroid_array) values_in_bin = centroid_array[mask] avg_centroid = float(np.mean(values_in_bin)) if len(values_in_bin) > 0 else None key = f"{start}-{end}" centroid_per_bin[key] = avg_centroid x_labels.append(key) y_values.append(avg_centroid if avg_centroid is not None else 0) # Save to JSON json_filename = "avg_mean_spectral_centroid_hz_per_duration15-20_bin.json" with open(json_filename, "w") as f: json.dump(centroid_per_bin, f, indent=2) # Plot plt.figure(figsize=(10, 6)) plt.bar(x_labels, y_values, color='royalblue', edgecolor='black') plt.xticks(rotation=45) plt.xlabel("Duration Bin (seconds)") plt.ylabel("Average Spectral Centroid (Hz)") plt.title("Average Spectral Centroid per Duration Bin (15-20) sec)") plt.grid(axis='y') plt.tight_layout() plt.savefig("/home/sidd/Desktop/work/IME DATASET REVIEW/audio_duration/AverageSpectral15-20.jpg") plt.show() # Clean spectral centroid values cleaned_centroid = [ float(x) if isinstance(x, (int, float)) and x is not None else np.nan for x in mean_spectral_centroid_hz ] centroid_array = np.array(cleaned_centroid, dtype=np.float32) # Clean duration values cleaned_durations = [ float(x) if isinstance(x, (int, float)) and x is not None else np.nan for x in duration_values ] duration_array = np.array(cleaned_durations, dtype=np.float32) # Define duration bins (0–5s with 0.5s step) bin_width = 0.5 min_duration = 20 max_duration = 25 bins = np.arange(min_duration, max_duration + bin_width, bin_width) # Compute average per bin centroid_per_bin = {} x_labels = [] y_values = [] for i in range(len(bins) - 1): start = bins[i] end = bins[i + 1] # Filter valid entries mask = (duration_array >= start) & (duration_array < end) & ~np.isnan(centroid_array) values_in_bin = centroid_array[mask] avg_centroid = float(np.mean(values_in_bin)) if len(values_in_bin) > 0 else None key = f"{start}-{end}" centroid_per_bin[key] = avg_centroid x_labels.append(key) y_values.append(avg_centroid if avg_centroid is not None else 0) # Save to JSON json_filename = "avg_mean_spectral_centroid_hz_per_duration20-25_bin.json" with open(json_filename, "w") as f: json.dump(centroid_per_bin, f, indent=2) # Plot plt.figure(figsize=(10, 6)) plt.bar(x_labels, y_values, color='royalblue', edgecolor='black') plt.xticks(rotation=45) plt.xlabel("Duration Bin (seconds)") plt.ylabel("Average Spectral Centroid (Hz)") plt.title("Average Spectral Centroid per Duration Bin (20-25) sec)") plt.grid(axis='y') plt.tight_layout() plt.savefig("/home/sidd/Desktop/work/IME DATASET REVIEW/audio_duration/AverageSpectral20-25.jpg") plt.show() # Clean spectral centroid values cleaned_centroid = [ float(x) if isinstance(x, (int, float)) and x is not None else np.nan for x in mean_spectral_centroid_hz ] centroid_array = np.array(cleaned_centroid, dtype=np.float32) # Clean duration values cleaned_durations = [ float(x) if isinstance(x, (int, float)) and x is not None else np.nan for x in duration_values ] duration_array = np.array(cleaned_durations, dtype=np.float32) # Define duration bins (0–5s with 0.5s step) bin_width = 0.5 min_duration = 25 max_duration = 30 bins = np.arange(min_duration, max_duration + bin_width, bin_width) # Compute average per bin centroid_per_bin = {} x_labels = [] y_values = [] for i in range(len(bins) - 1): start = bins[i] end = bins[i + 1] # Filter valid entries mask = (duration_array >= start) & (duration_array < end) & ~np.isnan(centroid_array) values_in_bin = centroid_array[mask] avg_centroid = float(np.mean(values_in_bin)) if len(values_in_bin) > 0 else None key = f"{start}-{end}" centroid_per_bin[key] = avg_centroid x_labels.append(key) y_values.append(avg_centroid if avg_centroid is not None else 0) # Save to JSON json_filename = "avg_mean_spectral_centroid_hz_per_duration25-30_bin.json" with open(json_filename, "w") as f: json.dump(centroid_per_bin, f, indent=2) # Plot plt.figure(figsize=(10, 6)) plt.bar(x_labels, y_values, color='royalblue', edgecolor='black') plt.xticks(rotation=45) plt.xlabel("Duration Bin (seconds)") plt.ylabel("Average Spectral Centroid (Hz)") plt.title("Average Spectral Centroid per Duration Bin (20-25) sec)") plt.grid(axis='y') plt.tight_layout() plt.savefig("/home/sidd/Desktop/work/IME DATASET REVIEW/audio_duration/AverageSpectral25-30jpg") plt.show() ###--------------------------------------------------SNR ESTIMATE DB----------------------------------------------------------####### snr_estimate_db= [example['audio_features']['snr_estimate_db'] for example in data] min_duration = 0 max_duration = 5 bin_width = 0.5 bins = np.arange(min_duration, max_duration + bin_width, bin_width) cleaned_snr = [float(x) if isinstance(x, (int, float)) and x is not None else np.nan for x in snr_estimate_db] snr_array = np.array(cleaned_snr, dtype=np.float32) cleaned_durations = [float(x) if isinstance(x, (int, float)) and x is not None else np.nan for x in duration_values] duration_array = np.array(cleaned_durations, dtype=np.float32) snr_per_bin = {} x_labels = [] y_values = [] for i in range(len(bins) - 1): mask = (duration_array >= bins[i]) & (duration_array < bins[i+1]) & ~np.isnan(snr_array) values = snr_array[mask] avg = float(np.mean(values)) if len(values) > 0 else None key = f"{bins[i]}-{bins[i+1]}" snr_per_bin[key] = avg x_labels.append(key) y_values.append(avg if avg is not None else 0) with open("avg_snr_estimate_db_per_duration0-5_bin.json", "w") as f: json.dump(snr_per_bin, f, indent=2) plt.figure(figsize=(10, 6)) plt.bar(x_labels, y_values, color='teal', edgecolor='black') plt.xticks(rotation=45) plt.xlabel("Duration Bin (s)") plt.ylabel("Avg SNR (dB)") plt.title("Average SNR Estimate per Duration Bin") plt.grid(axis='y') plt.tight_layout() plt.savefig("/home/sidd/Desktop/work/IME DATASET REVIEW/audio_duration/AverageSNR0-5.jpg") plt.show() min_duration = 5 max_duration = 10 bin_width = 0.5 bins = np.arange(min_duration, max_duration + bin_width, bin_width) cleaned_snr = [float(x) if isinstance(x, (int, float)) and x is not None else np.nan for x in snr_estimate_db] snr_array = np.array(cleaned_snr, dtype=np.float32) cleaned_durations = [float(x) if isinstance(x, (int, float)) and x is not None else np.nan for x in duration_values] duration_array = np.array(cleaned_durations, dtype=np.float32) snr_per_bin = {} x_labels = [] y_values = [] for i in range(len(bins) - 1): mask = (duration_array >= bins[i]) & (duration_array < bins[i+1]) & ~np.isnan(snr_array) values = snr_array[mask] avg = float(np.mean(values)) if len(values) > 0 else None key = f"{bins[i]}-{bins[i+1]}" snr_per_bin[key] = avg x_labels.append(key) y_values.append(avg if avg is not None else 0) with open("avg_snr_estimate_db_per_duration5-10_bin.json", "w") as f: json.dump(snr_per_bin, f, indent=2) plt.figure(figsize=(10, 6)) plt.bar(x_labels, y_values, color='teal', edgecolor='black') plt.xticks(rotation=45) plt.xlabel("Duration Bin (s)") plt.ylabel("Avg SNR (dB)") plt.title("Average SNR Estimate per Duration Bin") plt.grid(axis='y') plt.tight_layout() plt.savefig("/home/sidd/Desktop/work/IME DATASET REVIEW/audio_duration/AverageSNR5-10.jpg") plt.show() min_duration = 10 max_duration = 15 bin_width = 0.5 bins = np.arange(min_duration, max_duration + bin_width, bin_width) cleaned_snr = [float(x) if isinstance(x, (int, float)) and x is not None else np.nan for x in snr_estimate_db] snr_array = np.array(cleaned_snr, dtype=np.float32) cleaned_durations = [float(x) if isinstance(x, (int, float)) and x is not None else np.nan for x in duration_values] duration_array = np.array(cleaned_durations, dtype=np.float32) snr_per_bin = {} x_labels = [] y_values = [] for i in range(len(bins) - 1): mask = (duration_array >= bins[i]) & (duration_array < bins[i+1]) & ~np.isnan(snr_array) values = snr_array[mask] avg = float(np.mean(values)) if len(values) > 0 else None key = f"{bins[i]}-{bins[i+1]}" snr_per_bin[key] = avg x_labels.append(key) y_values.append(avg if avg is not None else 0) with open("avg_snr_estimate_db_per_duration10-15_bin.json", "w") as f: json.dump(snr_per_bin, f, indent=2) plt.figure(figsize=(10, 6)) plt.bar(x_labels, y_values, color='teal', edgecolor='black') plt.xticks(rotation=45) plt.xlabel("Duration Bin (s)") plt.ylabel("Avg SNR (dB)") plt.title("Average SNR Estimate per Duration Bin") plt.grid(axis='y') plt.tight_layout() plt.savefig("/home/sidd/Desktop/work/IME DATASET REVIEW/audio_duration/AverageSNR10-15.jpg") plt.show() min_duration = 15 max_duration = 20 bin_width = 0.5 bins = np.arange(min_duration, max_duration + bin_width, bin_width) cleaned_snr = [float(x) if isinstance(x, (int, float)) and x is not None else np.nan for x in snr_estimate_db] snr_array = np.array(cleaned_snr, dtype=np.float32) cleaned_durations = [float(x) if isinstance(x, (int, float)) and x is not None else np.nan for x in duration_values] duration_array = np.array(cleaned_durations, dtype=np.float32) snr_per_bin = {} x_labels = [] y_values = [] for i in range(len(bins) - 1): mask = (duration_array >= bins[i]) & (duration_array < bins[i+1]) & ~np.isnan(snr_array) values = snr_array[mask] avg = float(np.mean(values)) if len(values) > 0 else None key = f"{bins[i]}-{bins[i+1]}" snr_per_bin[key] = avg x_labels.append(key) y_values.append(avg if avg is not None else 0) with open("avg_snr_estimate_db_per_duration15-20_bin.json", "w") as f: json.dump(snr_per_bin, f, indent=2) plt.figure(figsize=(10, 6)) plt.bar(x_labels, y_values, color='teal', edgecolor='black') plt.xticks(rotation=45) plt.xlabel("Duration Bin (s)") plt.ylabel("Avg SNR (dB)") plt.title("Average SNR Estimate per Duration Bin") plt.grid(axis='y') plt.tight_layout() plt.savefig("/home/sidd/Desktop/work/IME DATASET REVIEW/audio_duration/AverageSNR15-20.jpg") plt.show() min_duration = 20 max_duration = 25 bin_width = 0.5 bins = np.arange(min_duration, max_duration + bin_width, bin_width) cleaned_snr = [float(x) if isinstance(x, (int, float)) and x is not None else np.nan for x in snr_estimate_db] snr_array = np.array(cleaned_snr, dtype=np.float32) cleaned_durations = [float(x) if isinstance(x, (int, float)) and x is not None else np.nan for x in duration_values] duration_array = np.array(cleaned_durations, dtype=np.float32) snr_per_bin = {} x_labels = [] y_values = [] for i in range(len(bins) - 1): mask = (duration_array >= bins[i]) & (duration_array < bins[i+1]) & ~np.isnan(snr_array) values = snr_array[mask] avg = float(np.mean(values)) if len(values) > 0 else None key = f"{bins[i]}-{bins[i+1]}" snr_per_bin[key] = avg x_labels.append(key) y_values.append(avg if avg is not None else 0) with open("avg_snr_estimate_db_per_duration20-25_bin.json", "w") as f: json.dump(snr_per_bin, f, indent=2) plt.figure(figsize=(10, 6)) plt.bar(x_labels, y_values, color='teal', edgecolor='black') plt.xticks(rotation=45) plt.xlabel("Duration Bin (s)") plt.ylabel("Avg SNR (dB)") plt.title("Average SNR Estimate per Duration Bin") plt.grid(axis='y') plt.tight_layout() plt.savefig("/home/sidd/Desktop/work/IME DATASET REVIEW/audio_duration/AverageSNR20-25.jpg") plt.show() min_duration = 25 max_duration = 30 bin_width = 0.5 bins = np.arange(min_duration, max_duration + bin_width, bin_width) cleaned_snr = [float(x) if isinstance(x, (int, float)) and x is not None else np.nan for x in snr_estimate_db] snr_array = np.array(cleaned_snr, dtype=np.float32) cleaned_durations = [float(x) if isinstance(x, (int, float)) and x is not None else np.nan for x in duration_values] duration_array = np.array(cleaned_durations, dtype=np.float32) snr_per_bin = {} x_labels = [] y_values = [] for i in range(len(bins) - 1): mask = (duration_array >= bins[i]) & (duration_array < bins[i+1]) & ~np.isnan(snr_array) values = snr_array[mask] avg = float(np.mean(values)) if len(values) > 0 else None key = f"{bins[i]}-{bins[i+1]}" snr_per_bin[key] = avg x_labels.append(key) y_values.append(avg if avg is not None else 0) with open("avg_snr_estimate_db_per_duration25-30_bin.json", "w") as f: json.dump(snr_per_bin, f, indent=2) plt.figure(figsize=(10, 6)) plt.bar(x_labels, y_values, color='teal', edgecolor='black') plt.xticks(rotation=45) plt.xlabel("Duration Bin (s)") plt.ylabel("Avg SNR (dB)") plt.title("Average SNR Estimate per Duration Bin") plt.grid(axis='y') plt.tight_layout() plt.savefig("/home/sidd/Desktop/work/IME DATASET REVIEW/audio_duration/AverageSNR25-30jpg") plt.show() #############-----------------------------------------------------SPEECH PERCENTAGE------------------------------------------------------_#################### speech_percentage= [example['audio_features']['speech_percentage'] for example in data] min_duration = 0 max_duration = 5 bin_width = 0.5 bins = np.arange(min_duration, max_duration + bin_width, bin_width) cleaned_speech_pct = [float(x) if isinstance(x, (int, float)) and x is not None else np.nan for x in speech_percentage] speech_pct_array = np.array(cleaned_speech_pct, dtype=np.float32) speech_per_bin = {} x_labels = [] y_values = [] for i in range(len(bins) - 1): mask = (duration_array >= bins[i]) & (duration_array < bins[i+1]) & ~np.isnan(speech_pct_array) values = speech_pct_array[mask] avg = float(np.mean(values)) if len(values) > 0 else None key = f"{bins[i]}-{bins[i+1]}" speech_per_bin[key] = avg x_labels.append(key) y_values.append(avg if avg is not None else 0) with open("avg_speech_percentage_per_duration0-5_bin.json", "w") as f: json.dump(speech_per_bin, f, indent=2) plt.figure(figsize=(10, 6)) plt.bar(x_labels, y_values, color='green', edgecolor='black') plt.xticks(rotation=45) plt.xlabel("Duration Bin (s)") plt.ylabel("Avg Speech %") plt.title("Average Speech Percentage per Duration Bin") plt.grid(axis='y') plt.tight_layout() plt.savefig("/home/sidd/Desktop/work/IME DATASET REVIEW/avg_speech/AverageSpeechPercentage0-5.jpg") plt.show() min_duration = 5 max_duration = 10 bin_width = 0.5 bins = np.arange(min_duration, max_duration + bin_width, bin_width) cleaned_speech_pct = [float(x) if isinstance(x, (int, float)) and x is not None else np.nan for x in speech_percentage] speech_pct_array = np.array(cleaned_speech_pct, dtype=np.float32) speech_per_bin = {} x_labels = [] y_values = [] for i in range(len(bins) - 1): mask = (duration_array >= bins[i]) & (duration_array < bins[i+1]) & ~np.isnan(speech_pct_array) values = speech_pct_array[mask] avg = float(np.mean(values)) if len(values) > 0 else None key = f"{bins[i]}-{bins[i+1]}" speech_per_bin[key] = avg x_labels.append(key) y_values.append(avg if avg is not None else 0) with open("avg_speech_percentage_per_duration5-10_bin.json", "w") as f: json.dump(speech_per_bin, f, indent=2) plt.figure(figsize=(10, 6)) plt.bar(x_labels, y_values, color='green', edgecolor='black') plt.xticks(rotation=45) plt.xlabel("Duration Bin (s)") plt.ylabel("Avg Speech %") plt.title("Average Speech Percentage per Duration Bin") plt.grid(axis='y') plt.tight_layout() plt.savefig("/home/sidd/Desktop/work/IME DATASET REVIEW/audio_duration/AverageSpeechPercentage5-10.jpg") plt.show() min_duration = 10 max_duration = 15 bin_width = 0.5 bins = np.arange(min_duration, max_duration + bin_width, bin_width) cleaned_speech_pct = [float(x) if isinstance(x, (int, float)) and x is not None else np.nan for x in speech_percentage] speech_pct_array = np.array(cleaned_speech_pct, dtype=np.float32) speech_per_bin = {} x_labels = [] y_values = [] for i in range(len(bins) - 1): mask = (duration_array >= bins[i]) & (duration_array < bins[i+1]) & ~np.isnan(speech_pct_array) values = speech_pct_array[mask] avg = float(np.mean(values)) if len(values) > 0 else None key = f"{bins[i]}-{bins[i+1]}" speech_per_bin[key] = avg x_labels.append(key) y_values.append(avg if avg is not None else 0) with open("avg_speech_percentage_per_duration10-15_bin.json", "w") as f: json.dump(speech_per_bin, f, indent=2) plt.figure(figsize=(10, 6)) plt.bar(x_labels, y_values, color='green', edgecolor='black') plt.xticks(rotation=45) plt.xlabel("Duration Bin (s)") plt.ylabel("Avg Speech %") plt.title("Average Speech Percentage per Duration Bin") plt.grid(axis='y') plt.tight_layout() plt.savefig("/home/sidd/Desktop/work/IME DATASET REVIEW/audio_duration/AverageSpeechPercentage10-15.jpg") plt.show() min_duration = 15 max_duration = 20 bin_width = 0.5 bins = np.arange(min_duration, max_duration + bin_width, bin_width) cleaned_speech_pct = [float(x) if isinstance(x, (int, float)) and x is not None else np.nan for x in speech_percentage] speech_pct_array = np.array(cleaned_speech_pct, dtype=np.float32) speech_per_bin = {} x_labels = [] y_values = [] for i in range(len(bins) - 1): mask = (duration_array >= bins[i]) & (duration_array < bins[i+1]) & ~np.isnan(speech_pct_array) values = speech_pct_array[mask] avg = float(np.mean(values)) if len(values) > 0 else None key = f"{bins[i]}-{bins[i+1]}" speech_per_bin[key] = avg x_labels.append(key) y_values.append(avg if avg is not None else 0) with open("avg_speech_percentage_per_duration15-20_bin.json", "w") as f: json.dump(speech_per_bin, f, indent=2) plt.figure(figsize=(10, 6)) plt.bar(x_labels, y_values, color='green', edgecolor='black') plt.xticks(rotation=45) plt.xlabel("Duration Bin (s)") plt.ylabel("Avg Speech %") plt.title("Average Speech Percentage per Duration Bin") plt.grid(axis='y') plt.tight_layout() plt.savefig("/home/sidd/Desktop/work/IME DATASET REVIEW/audio_duration/AverageSpeechPercentage15-20.jpg") plt.show() min_duration = 20 max_duration = 25 bin_width = 0.5 bins = np.arange(min_duration, max_duration + bin_width, bin_width) cleaned_speech_pct = [float(x) if isinstance(x, (int, float)) and x is not None else np.nan for x in speech_percentage] speech_pct_array = np.array(cleaned_speech_pct, dtype=np.float32) speech_per_bin = {} x_labels = [] y_values = [] for i in range(len(bins) - 1): mask = (duration_array >= bins[i]) & (duration_array < bins[i+1]) & ~np.isnan(speech_pct_array) values = speech_pct_array[mask] avg = float(np.mean(values)) if len(values) > 0 else None key = f"{bins[i]}-{bins[i+1]}" speech_per_bin[key] = avg x_labels.append(key) y_values.append(avg if avg is not None else 0) with open("avg_speech_percentage_per_duration20-25_bin.json", "w") as f: json.dump(speech_per_bin, f, indent=2) plt.figure(figsize=(10, 6)) plt.bar(x_labels, y_values, color='green', edgecolor='black') plt.xticks(rotation=45) plt.xlabel("Duration Bin (s)") plt.ylabel("Avg Speech %") plt.title("Average Speech Percentage per Duration Bin") plt.grid(axis='y') plt.tight_layout() plt.savefig("/home/sidd/Desktop/work/IME DATASET REVIEW/audio_duration/AverageSpeechPercentage20-25.jpg") plt.show() min_duration = 25 max_duration = 30 bin_width = 0.5 bins = np.arange(min_duration, max_duration + bin_width, bin_width) cleaned_speech_pct = [float(x) if isinstance(x, (int, float)) and x is not None else np.nan for x in speech_percentage] speech_pct_array = np.array(cleaned_speech_pct, dtype=np.float32) speech_per_bin = {} x_labels = [] y_values = [] for i in range(len(bins) - 1): mask = (duration_array >= bins[i]) & (duration_array < bins[i+1]) & ~np.isnan(speech_pct_array) values = speech_pct_array[mask] avg = float(np.mean(values)) if len(values) > 0 else None key = f"{bins[i]}-{bins[i+1]}" speech_per_bin[key] = avg x_labels.append(key) y_values.append(avg if avg is not None else 0) with open("avg_speech_percentage_per_duration25-30_bin.json", "w") as f: json.dump(speech_per_bin, f, indent=2) plt.figure(figsize=(10, 6)) plt.bar(x_labels, y_values, color='green', edgecolor='black') plt.xticks(rotation=45) plt.xlabel("Duration Bin (s)") plt.ylabel("Avg Speech %") plt.title("Average Speech Percentage per Duration Bin") plt.grid(axis='y') plt.tight_layout() plt.savefig("/home/sidd/Desktop/work/IME DATASET REVIEW/audio_duration/AverageSpeechPercentage25-30.jpg") plt.show() #########################------------------_______AVG_STD_DEV_F0--------------------------------------------------___________############################ std_dev_f0_hz = [example['audio_features']['std_dev_f0_hz'] for example in data] min_duration = 0 max_duration = 5 bin_width = 0.5 bins = np.arange(min_duration, max_duration + bin_width, bin_width) cleaned_std_f0 = [float(x) if isinstance(x, (int, float)) and x is not None else np.nan for x in std_dev_f0_hz] std_f0_array = np.array(cleaned_std_f0, dtype=np.float32) std_f0_per_bin = {} x_labels = [] y_values = [] for i in range(len(bins) - 1): mask = (duration_array >= bins[i]) & (duration_array < bins[i+1]) & ~np.isnan(std_f0_array) values = std_f0_array[mask] avg = float(np.mean(values)) if len(values) > 0 else None key = f"{bins[i]}-{bins[i+1]}" std_f0_per_bin[key] = avg x_labels.append(key) y_values.append(avg if avg is not None else 0) with open("avg_std_dev_f0_hz_per_duration0-5_bin.json", "w") as f: json.dump(std_f0_per_bin, f, indent=2) plt.figure(figsize=(10, 6)) plt.bar(x_labels, y_values, color='violet', edgecolor='black') plt.xticks(rotation=45) plt.xlabel("Duration Bin (s)") plt.ylabel("Avg Std Dev F0 (Hz)") plt.title("Avg Std Dev of F0 per Duration Bin") plt.grid(axis='y') plt.tight_layout() plt.savefig("/home/sidd/Desktop/work/IME DATASET REVIEW/audio_duration/AvgStdDev0-5.jpg") plt.show() min_duration = 5 max_duration = 10 bin_width = 0.5 bins = np.arange(min_duration, max_duration + bin_width, bin_width) cleaned_std_f0 = [float(x) if isinstance(x, (int, float)) and x is not None else np.nan for x in std_dev_f0_hz] std_f0_array = np.array(cleaned_std_f0, dtype=np.float32) std_f0_per_bin = {} x_labels = [] y_values = [] for i in range(len(bins) - 1): mask = (duration_array >= bins[i]) & (duration_array < bins[i+1]) & ~np.isnan(std_f0_array) values = std_f0_array[mask] avg = float(np.mean(values)) if len(values) > 0 else None key = f"{bins[i]}-{bins[i+1]}" std_f0_per_bin[key] = avg x_labels.append(key) y_values.append(avg if avg is not None else 0) with open("avg_std_dev_f0_hz_per_duration5-10_bin.json", "w") as f: json.dump(std_f0_per_bin, f, indent=2) plt.figure(figsize=(10, 6)) plt.bar(x_labels, y_values, color='violet', edgecolor='black') plt.xticks(rotation=45) plt.xlabel("Duration Bin (s)") plt.ylabel("Avg Std Dev F0 (Hz)") plt.title("Avg Std Dev of F0 per Duration Bin") plt.grid(axis='y') plt.tight_layout() plt.savefig("/home/sidd/Desktop/work/IME DATASET REVIEW/audio_duration/AvgStdDev5-10.jpg") plt.show() min_duration = 10 max_duration = 15 bin_width = 0.5 bins = np.arange(min_duration, max_duration + bin_width, bin_width) cleaned_std_f0 = [float(x) if isinstance(x, (int, float)) and x is not None else np.nan for x in std_dev_f0_hz] std_f0_array = np.array(cleaned_std_f0, dtype=np.float32) std_f0_per_bin = {} x_labels = [] y_values = [] for i in range(len(bins) - 1): mask = (duration_array >= bins[i]) & (duration_array < bins[i+1]) & ~np.isnan(std_f0_array) values = std_f0_array[mask] avg = float(np.mean(values)) if len(values) > 0 else None key = f"{bins[i]}-{bins[i+1]}" std_f0_per_bin[key] = avg x_labels.append(key) y_values.append(avg if avg is not None else 0) with open("avg_std_dev_f0_hz_per_duration10-15_bin.json", "w") as f: json.dump(std_f0_per_bin, f, indent=2) plt.figure(figsize=(10, 6)) plt.bar(x_labels, y_values, color='violet', edgecolor='black') plt.xticks(rotation=45) plt.xlabel("Duration Bin (s)") plt.ylabel("Avg Std Dev F0 (Hz)") plt.title("Avg Std Dev of F0 per Duration Bin") plt.grid(axis='y') plt.tight_layout() plt.savefig("/home/sidd/Desktop/work/IME DATASET REVIEW/audio_duration/AvgStdDev10-15.jpg") plt.show() min_duration = 15 max_duration = 20 bin_width = 0.5 bins = np.arange(min_duration, max_duration + bin_width, bin_width) cleaned_std_f0 = [float(x) if isinstance(x, (int, float)) and x is not None else np.nan for x in std_dev_f0_hz] std_f0_array = np.array(cleaned_std_f0, dtype=np.float32) std_f0_per_bin = {} x_labels = [] y_values = [] for i in range(len(bins) - 1): mask = (duration_array >= bins[i]) & (duration_array < bins[i+1]) & ~np.isnan(std_f0_array) values = std_f0_array[mask] avg = float(np.mean(values)) if len(values) > 0 else None key = f"{bins[i]}-{bins[i+1]}" std_f0_per_bin[key] = avg x_labels.append(key) y_values.append(avg if avg is not None else 0) with open("avg_std_dev_f0_hz_per_duration15-20_bin.json", "w") as f: json.dump(std_f0_per_bin, f, indent=2) plt.figure(figsize=(10, 6)) plt.bar(x_labels, y_values, color='violet', edgecolor='black') plt.xticks(rotation=45) plt.xlabel("Duration Bin (s)") plt.ylabel("Avg Std Dev F0 (Hz)") plt.title("Avg Std Dev of F0 per Duration Bin") plt.grid(axis='y') plt.tight_layout() plt.savefig("/home/sidd/Desktop/work/IME DATASET REVIEW/audio_duration/AvgStdDev15-20.jpg") plt.show() min_duration = 20 max_duration = 25 bin_width = 0.5 bins = np.arange(min_duration, max_duration + bin_width, bin_width) cleaned_std_f0 = [float(x) if isinstance(x, (int, float)) and x is not None else np.nan for x in std_dev_f0_hz] std_f0_array = np.array(cleaned_std_f0, dtype=np.float32) std_f0_per_bin = {} x_labels = [] y_values = [] for i in range(len(bins) - 1): mask = (duration_array >= bins[i]) & (duration_array < bins[i+1]) & ~np.isnan(std_f0_array) values = std_f0_array[mask] avg = float(np.mean(values)) if len(values) > 0 else None key = f"{bins[i]}-{bins[i+1]}" std_f0_per_bin[key] = avg x_labels.append(key) y_values.append(avg if avg is not None else 0) with open("avg_std_dev_f0_hz_per_duration20-25_bin.json", "w") as f: json.dump(std_f0_per_bin, f, indent=2) plt.figure(figsize=(10, 6)) plt.bar(x_labels, y_values, color='violet', edgecolor='black') plt.xticks(rotation=45) plt.xlabel("Duration Bin (s)") plt.ylabel("Avg Std Dev F0 (Hz)") plt.title("Avg Std Dev of F0 per Duration Bin") plt.grid(axis='y') plt.tight_layout() plt.savefig("/home/sidd/Desktop/work/IME DATASET REVIEW/audio_duration/AvgStdDev20-25.jpg") plt.show() min_duration = 25 max_duration = 30 bin_width = 0.5 bins = np.arange(min_duration, max_duration + bin_width, bin_width) cleaned_std_f0 = [float(x) if isinstance(x, (int, float)) and x is not None else np.nan for x in std_dev_f0_hz] std_f0_array = np.array(cleaned_std_f0, dtype=np.float32) std_f0_per_bin = {} x_labels = [] y_values = [] for i in range(len(bins) - 1): mask = (duration_array >= bins[i]) & (duration_array < bins[i+1]) & ~np.isnan(std_f0_array) values = std_f0_array[mask] avg = float(np.mean(values)) if len(values) > 0 else None key = f"{bins[i]}-{bins[i+1]}" std_f0_per_bin[key] = avg x_labels.append(key) y_values.append(avg if avg is not None else 0) with open("avg_std_dev_f0_hz_per_duration25-30_bin.json", "w") as f: json.dump(std_f0_per_bin, f, indent=2) plt.figure(figsize=(10, 6)) plt.bar(x_labels, y_values, color='violet', edgecolor='black') plt.xticks(rotation=45) plt.xlabel("Duration Bin (s)") plt.ylabel("Avg Std Dev F0 (Hz)") plt.title("Avg Std Dev of F0 per Duration Bin") plt.grid(axis='y') plt.tight_layout() plt.savefig("/home/sidd/Desktop/work/IME DATASET REVIEW/audio_duration/AvgStdDev25-30.jpg") plt.show() ###############################3-------------------------------------_BANDWIDTH CATEGORY--------------------------------------------------------------####### bandwidth_category = [example['audio_features']['bandwidth_category'] for example in data] import numpy as np import matplotlib.pyplot as plt import json # Define duration bin range min_duration = 0 max_duration = 5 bin_width = 0.5 bins = np.arange(min_duration, max_duration + bin_width, bin_width) # Convert lists to arrays bandwidth_category_array = np.array(bandwidth_category, dtype=object) duration_array = np.array(duration_values, dtype=np.float32) # Create result dict bandwidth_per_bin = {} x_labels = [] for i in range(len(bins) - 1): start, end = bins[i], bins[i + 1] # Mask: duration in bin and bandwidth_category is valid mask = ( (duration_array >= start) & (duration_array < end) & np.array([x is not None and x != '' for x in bandwidth_category_array]) ) # Filter categories categories_in_bin = bandwidth_category_array[mask] # Count occurrences of each category category_counts = {} for category in categories_in_bin: category_counts[category] = category_counts.get(category, 0) + 1 # Save to dict key = f"{start}-{end}" bandwidth_per_bin[key] = category_counts x_labels.append(key) # Save result as JSON with open("bandwidth_category_per_duration_bin.json", "w") as f: json.dump(bandwidth_per_bin, f, indent=2) # Prepare data for plotting category_labels = list(set(cat for bin_data in bandwidth_per_bin.values() for cat in bin_data.keys())) category_counts = {category: [] for category in category_labels} for label in x_labels: bin_data = bandwidth_per_bin[label] for category in category_labels: category_counts[category].append(bin_data.get(category, 0)) # Plot plt.figure(figsize=(10, 6)) bar_width = 0.1 for idx, category in enumerate(category_labels): plt.bar( np.arange(len(x_labels)) + idx * bar_width, category_counts[category], width=bar_width, label=category ) plt.xticks(np.arange(len(x_labels)) + bar_width * (len(category_labels) - 1) / 2, x_labels, rotation=45) plt.xlabel("Duration Bin (s)") plt.ylabel("Count") plt.title("Bandwidth Category per Duration Bin") plt.legend(title="Bandwidth Category") plt.tight_layout() plt.savefig("/home/sidd/Desktop/work/IME DATASET REVIEW/bandwidth_category/bandwidth_duration0-5_histogram.jpg") plt.show() import numpy as np import matplotlib.pyplot as plt import json # Define duration bin range min_duration = 5 max_duration = 10 bin_width = 0.5 bins = np.arange(min_duration, max_duration + bin_width, bin_width) # Convert lists to arrays bandwidth_category_array = np.array(bandwidth_category, dtype=object) duration_array = np.array(duration_values, dtype=np.float32) # Create result dict bandwidth_per_bin = {} x_labels = [] for i in range(len(bins) - 1): start, end = bins[i], bins[i + 1] # Mask: duration in bin and bandwidth_category is valid mask = ( (duration_array >= start) & (duration_array < end) & np.array([x is not None and x != '' for x in bandwidth_category_array]) ) # Filter categories categories_in_bin = bandwidth_category_array[mask] # Count occurrences of each category category_counts = {} for category in categories_in_bin: category_counts[category] = category_counts.get(category, 0) + 1 # Save to dict key = f"{start}-{end}" bandwidth_per_bin[key] = category_counts x_labels.append(key) # Save result as JSON with open("bandwidth_category_per_duration5_bin.json", "w") as f: json.dump(bandwidth_per_bin, f, indent=2) # Prepare data for plotting category_labels = list(set(cat for bin_data in bandwidth_per_bin.values() for cat in bin_data.keys())) category_counts = {category: [] for category in category_labels} for label in x_labels: bin_data = bandwidth_per_bin[label] for category in category_labels: category_counts[category].append(bin_data.get(category, 0)) # Plot plt.figure(figsize=(10, 6)) bar_width = 0.1 for idx, category in enumerate(category_labels): plt.bar( np.arange(len(x_labels)) + idx * bar_width, category_counts[category], width=bar_width, label=category ) plt.xticks(np.arange(len(x_labels)) + bar_width * (len(category_labels) - 1) / 2, x_labels, rotation=45) plt.xlabel("Duration Bin (s)") plt.ylabel("Count") plt.title("Bandwidth Category per Duration Bin") plt.legend(title="Bandwidth Category") plt.tight_layout() plt.savefig("/home/sidd/Desktop/work/IME DATASET REVIEW/bandwidth_category/bandwidth_duration5-10_histogram.jpg") plt.show() import numpy as np import matplotlib.pyplot as plt import json # Define duration bin range min_duration = 5 max_duration = 10 bin_width = 0.5 bins = np.arange(min_duration, max_duration + bin_width, bin_width) # Convert lists to arrays bandwidth_category_array = np.array(bandwidth_category, dtype=object) duration_array = np.array(duration_values, dtype=np.float32) # Create result dict bandwidth_per_bin = {} x_labels = [] for i in range(len(bins) - 1): start, end = bins[i], bins[i + 1] # Mask: duration in bin and bandwidth_category is valid mask = ( (duration_array >= start) & (duration_array < end) & np.array([x is not None and x != '' for x in bandwidth_category_array]) ) # Filter categories categories_in_bin = bandwidth_category_array[mask] # Count occurrences of each category category_counts = {} for category in categories_in_bin: category_counts[category] = category_counts.get(category, 0) + 1 # Save to dict key = f"{start}-{end}" bandwidth_per_bin[key] = category_counts x_labels.append(key) # Save result as JSON with open("bandwidth_category_per_duration10-15_bin.json", "w") as f: json.dump(bandwidth_per_bin, f, indent=2) # Prepare data for plotting category_labels = list(set(cat for bin_data in bandwidth_per_bin.values() for cat in bin_data.keys())) category_counts = {category: [] for category in category_labels} for label in x_labels: bin_data = bandwidth_per_bin[label] for category in category_labels: category_counts[category].append(bin_data.get(category, 0)) # Plot plt.figure(figsize=(10, 6)) bar_width = 0.1 for idx, category in enumerate(category_labels): plt.bar( np.arange(len(x_labels)) + idx * bar_width, category_counts[category], width=bar_width, label=category ) plt.xticks(np.arange(len(x_labels)) + bar_width * (len(category_labels) - 1) / 2, x_labels, rotation=45) plt.xlabel("Duration Bin (s)") plt.ylabel("Count") plt.title("Bandwidth Category per Duration Bin") plt.legend(title="Bandwidth Category") plt.tight_layout() plt.savefig("/home/sidd/Desktop/work/IME DATASET REVIEW/bandwidth_category/bandwidth_duration10-15_histogram.jpg") plt.show() import numpy as np import matplotlib.pyplot as plt import json # Define duration bin range min_duration = 15 max_duration = 20 bin_width = 0.5 bins = np.arange(min_duration, max_duration + bin_width, bin_width) # Convert lists to arrays bandwidth_category_array = np.array(bandwidth_category, dtype=object) duration_array = np.array(duration_values, dtype=np.float32) # Create result dict bandwidth_per_bin = {} x_labels = [] for i in range(len(bins) - 1): start, end = bins[i], bins[i + 1] # Mask: duration in bin and bandwidth_category is valid mask = ( (duration_array >= start) & (duration_array < end) & np.array([x is not None and x != '' for x in bandwidth_category_array]) ) # Filter categories categories_in_bin = bandwidth_category_array[mask] # Count occurrences of each category category_counts = {} for category in categories_in_bin: category_counts[category] = category_counts.get(category, 0) + 1 # Save to dict key = f"{start}-{end}" bandwidth_per_bin[key] = category_counts x_labels.append(key) # Save result as JSON with open("bandwidth_category_per_duration15-20_bin.json", "w") as f: json.dump(bandwidth_per_bin, f, indent=2) # Prepare data for plotting category_labels = list(set(cat for bin_data in bandwidth_per_bin.values() for cat in bin_data.keys())) category_counts = {category: [] for category in category_labels} for label in x_labels: bin_data = bandwidth_per_bin[label] for category in category_labels: category_counts[category].append(bin_data.get(category, 0)) # Plot plt.figure(figsize=(10, 6)) bar_width = 0.1 for idx, category in enumerate(category_labels): plt.bar( np.arange(len(x_labels)) + idx * bar_width, category_counts[category], width=bar_width, label=category ) plt.xticks(np.arange(len(x_labels)) + bar_width * (len(category_labels) - 1) / 2, x_labels, rotation=45) plt.xlabel("Duration Bin (s)") plt.ylabel("Count") plt.title("Bandwidth Category per Duration Bin") plt.legend(title="Bandwidth Category") plt.tight_layout() plt.savefig("/home/sidd/Desktop/work/IME DATASET REVIEW/bandwidth_category/bandwidth_duration15-20_histogram.jpg") plt.show() import numpy as np import matplotlib.pyplot as plt import json # Define duration bin range min_duration = 20 max_duration = 25 bin_width = 0.5 bins = np.arange(min_duration, max_duration + bin_width, bin_width) # Convert lists to arrays bandwidth_category_array = np.array(bandwidth_category, dtype=object) duration_array = np.array(duration_values, dtype=np.float32) # Create result dict bandwidth_per_bin = {} x_labels = [] for i in range(len(bins) - 1): start, end = bins[i], bins[i + 1] # Mask: duration in bin and bandwidth_category is valid mask = ( (duration_array >= start) & (duration_array < end) & np.array([x is not None and x != '' for x in bandwidth_category_array]) ) # Filter categories categories_in_bin = bandwidth_category_array[mask] # Count occurrences of each category category_counts = {} for category in categories_in_bin: category_counts[category] = category_counts.get(category, 0) + 1 # Save to dict key = f"{start}-{end}" bandwidth_per_bin[key] = category_counts x_labels.append(key) # Save result as JSON with open("bandwidth_category_per_duration20-25_bin.json", "w") as f: json.dump(bandwidth_per_bin, f, indent=2) # Prepare data for plotting category_labels = list(set(cat for bin_data in bandwidth_per_bin.values() for cat in bin_data.keys())) category_counts = {category: [] for category in category_labels} for label in x_labels: bin_data = bandwidth_per_bin[label] for category in category_labels: category_counts[category].append(bin_data.get(category, 0)) # Plot plt.figure(figsize=(10, 6)) bar_width = 0.1 for idx, category in enumerate(category_labels): plt.bar( np.arange(len(x_labels)) + idx * bar_width, category_counts[category], width=bar_width, label=category ) plt.xticks(np.arange(len(x_labels)) + bar_width * (len(category_labels) - 1) / 2, x_labels, rotation=45) plt.xlabel("Duration Bin (s)") plt.ylabel("Count") plt.title("Bandwidth Category per Duration Bin") plt.legend(title="Bandwidth Category") plt.tight_layout() plt.savefig("/home/sidd/Desktop/work/IME DATASET REVIEW/bandwidth_category/bandwidth_duration20-25_histogram.jpg") plt.show() import numpy as np import matplotlib.pyplot as plt import json # Define duration bin range min_duration = 20 max_duration = 25 bin_width = 0.5 bins = np.arange(min_duration, max_duration + bin_width, bin_width) # Convert lists to arrays bandwidth_category_array = np.array(bandwidth_category, dtype=object) duration_array = np.array(duration_values, dtype=np.float32) # Create result dict bandwidth_per_bin = {} x_labels = [] for i in range(len(bins) - 1): start, end = bins[i], bins[i + 1] # Mask: duration in bin and bandwidth_category is valid mask = ( (duration_array >= start) & (duration_array < end) & np.array([x is not None and x != '' for x in bandwidth_category_array]) ) # Filter categories categories_in_bin = bandwidth_category_array[mask] # Count occurrences of each category category_counts = {} for category in categories_in_bin: category_counts[category] = category_counts.get(category, 0) + 1 # Save to dict key = f"{start}-{end}" bandwidth_per_bin[key] = category_counts x_labels.append(key) # Save result as JSON with open("bandwidth_category_per_duration20-25_bin.json", "w") as f: json.dump(bandwidth_per_bin, f, indent=2) # Prepare data for plotting category_labels = list(set(cat for bin_data in bandwidth_per_bin.values() for cat in bin_data.keys())) category_counts = {category: [] for category in category_labels} for label in x_labels: bin_data = bandwidth_per_bin[label] for category in category_labels: category_counts[category].append(bin_data.get(category, 0)) # Plot plt.figure(figsize=(10, 6)) bar_width = 0.1 for idx, category in enumerate(category_labels): plt.bar( np.arange(len(x_labels)) + idx * bar_width, category_counts[category], width=bar_width, label=category ) plt.xticks(np.arange(len(x_labels)) + bar_width * (len(category_labels) - 1) / 2, x_labels, rotation=45) plt.xlabel("Duration Bin (s)") plt.ylabel("Count") plt.title("Bandwidth Category per Duration Bin") plt.legend(title="Bandwidth Category") plt.tight_layout() plt.savefig("/home/sidd/Desktop/work/IME DATASET REVIEW/bandwidth_category/bandwidth_duration20-25_histogram.jpg") plt.show() import numpy as np import matplotlib.pyplot as plt import json # Define duration bin range min_duration = 25 max_duration = 30 bin_width = 0.5 bins = np.arange(min_duration, max_duration + bin_width, bin_width) # Convert lists to arrays bandwidth_category_array = np.array(bandwidth_category, dtype=object) duration_array = np.array(duration_values, dtype=np.float32) # Create result dict bandwidth_per_bin = {} x_labels = [] for i in range(len(bins) - 1): start, end = bins[i], bins[i + 1] # Mask: duration in bin and bandwidth_category is valid mask = ( (duration_array >= start) & (duration_array < end) & np.array([x is not None and x != '' for x in bandwidth_category_array]) ) # Filter categories categories_in_bin = bandwidth_category_array[mask] # Count occurrences of each category category_counts = {} for category in categories_in_bin: category_counts[category] = category_counts.get(category, 0) + 1 # Save to dict key = f"{start}-{end}" bandwidth_per_bin[key] = category_counts x_labels.append(key) # Save result as JSON with open("bandwidth_category_per_duration25-30_bin.json", "w") as f: json.dump(bandwidth_per_bin, f, indent=2) # Prepare data for plotting category_labels = list(set(cat for bin_data in bandwidth_per_bin.values() for cat in bin_data.keys())) category_counts = {category: [] for category in category_labels} for label in x_labels: bin_data = bandwidth_per_bin[label] for category in category_labels: category_counts[category].append(bin_data.get(category, 0)) # Plot plt.figure(figsize=(10, 6)) bar_width = 0.1 for idx, category in enumerate(category_labels): plt.bar( np.arange(len(x_labels)) + idx * bar_width, category_counts[category], width=bar_width, label=category ) plt.xticks(np.arange(len(x_labels)) + bar_width * (len(category_labels) - 1) / 2, x_labels, rotation=45) plt.xlabel("Duration Bin (s)") plt.ylabel("Count") plt.title("Bandwidth Category per Duration Bin") plt.legend(title="Bandwidth Category") plt.tight_layout() # plt.savefig("/home/sidd/Desktop/work/IME DATASET REVIEW/bandwidth_category/audio_duration_histogram0-5.jpg") plt.show() ##########--------------------------CLIPPING PERCENTAGE----------------------------------________############################ import numpy as np import matplotlib.pyplot as plt import json # Extract data clipping_percentage = [example['audio_features']['clipping_percentage'] for example in data] duration_values = [example['audio_features']['duration'] for example in data] # Define duration bin range min_duration = 0 max_duration = 5 bin_width = 0.5 bins = np.arange(min_duration, max_duration + bin_width, bin_width) # Convert to numpy arrays clipping_array = np.array([ float(x) if isinstance(x, (float, int)) and x is not None else np.nan for x in clipping_percentage ], dtype=np.float32) duration_array = np.array([ float(x) if isinstance(x, (float, int)) and x is not None else np.nan for x in duration_values ], dtype=np.float32) # Compute average clipping_percentage per duration bin clipping_per_bin = {} x_labels = [] for i in range(len(bins) - 1): start, end = bins[i], bins[i + 1] mask = (duration_array >= start) & (duration_array < end) values_in_bin = clipping_array[mask] values_in_bin = values_in_bin[~np.isnan(values_in_bin)] avg_clip = float(np.mean(values_in_bin)) if len(values_in_bin) > 0 else None key = f"{start}-{end}" clipping_per_bin[key] = avg_clip x_labels.append(key) # Save JSON with open("clipping_percentage_per_duration0-5_bin.json", "w") as f: json.dump(clipping_per_bin, f, indent=2) # Plot heights = [clipping_per_bin[label] if clipping_per_bin[label] is not None else 0 for label in x_labels] plt.figure(figsize=(10, 6)) plt.bar(x_labels, heights, color='teal', edgecolor='black') plt.xlabel("Duration Bin (s)") plt.ylabel("Average Clipping Percentage") plt.title("Average Clipping Percentage per Duration Bin") plt.xticks(rotation=45) plt.tight_layout() plt.savefig("/home/sidd/Desktop/work/IME DATASET REVIEW/Avg_clipping_percentage/clipping_Percent_histogram0-5.jpg") plt.show() import numpy as np import matplotlib.pyplot as plt import json # Define duration bin range min_duration = 5 max_duration = 10 bin_width = 0.5 bins = np.arange(min_duration, max_duration + bin_width, bin_width) # Convert to numpy arrays clipping_array = np.array([ float(x) if isinstance(x, (float, int)) and x is not None else np.nan for x in clipping_percentage ], dtype=np.float32) duration_array = np.array([ float(x) if isinstance(x, (float, int)) and x is not None else np.nan for x in duration_values ], dtype=np.float32) # Compute average clipping_percentage per duration bin clipping_per_bin = {} x_labels = [] for i in range(len(bins) - 1): start, end = bins[i], bins[i + 1] mask = (duration_array >= start) & (duration_array < end) values_in_bin = clipping_array[mask] values_in_bin = values_in_bin[~np.isnan(values_in_bin)] avg_clip = float(np.mean(values_in_bin)) if len(values_in_bin) > 0 else None key = f"{start}-{end}" clipping_per_bin[key] = avg_clip x_labels.append(key) # Save JSON with open("clipping_percentage_per_duration5-10_bin.json", "w") as f: json.dump(clipping_per_bin, f, indent=2) # Plot heights = [clipping_per_bin[label] if clipping_per_bin[label] is not None else 0 for label in x_labels] plt.figure(figsize=(10, 6)) plt.bar(x_labels, heights, color='teal', edgecolor='black') plt.xlabel("Duration Bin (s)") plt.ylabel("Average Clipping Percentage") plt.title("Average Clipping Percentage per Duration Bin") plt.xticks(rotation=45) plt.tight_layout() plt.savefig("/home/sidd/Desktop/work/IME DATASET REVIEW/Avg_clipping_percentage/clipping_Percent_histogram5-10.jpg") plt.show() import numpy as np import matplotlib.pyplot as plt import json # Define duration bin range min_duration = 10 max_duration = 15 bin_width = 0.5 bins = np.arange(min_duration, max_duration + bin_width, bin_width) # Convert to numpy arrays clipping_array = np.array([ float(x) if isinstance(x, (float, int)) and x is not None else np.nan for x in clipping_percentage ], dtype=np.float32) duration_array = np.array([ float(x) if isinstance(x, (float, int)) and x is not None else np.nan for x in duration_values ], dtype=np.float32) # Compute average clipping_percentage per duration bin clipping_per_bin = {} x_labels = [] for i in range(len(bins) - 1): start, end = bins[i], bins[i + 1] mask = (duration_array >= start) & (duration_array < end) values_in_bin = clipping_array[mask] values_in_bin = values_in_bin[~np.isnan(values_in_bin)] avg_clip = float(np.mean(values_in_bin)) if len(values_in_bin) > 0 else None key = f"{start}-{end}" clipping_per_bin[key] = avg_clip x_labels.append(key) # Save JSON with open("clipping_percentage_per_duration10-15_bin.json", "w") as f: json.dump(clipping_per_bin, f, indent=2) # Plot heights = [clipping_per_bin[label] if clipping_per_bin[label] is not None else 0 for label in x_labels] plt.figure(figsize=(10, 6)) plt.bar(x_labels, heights, color='teal', edgecolor='black') plt.xlabel("Duration Bin (s)") plt.ylabel("Average Clipping Percentage") plt.title("Average Clipping Percentage per Duration Bin") plt.xticks(rotation=45) plt.tight_layout() plt.savefig("/home/sidd/Desktop/work/IME DATASET REVIEW/Avg_clipping_percentage/clipping_Percent_histogram10-15.jpg") plt.show() import numpy as np import matplotlib.pyplot as plt import json # Define duration bin range min_duration = 15 max_duration = 20 bin_width = 0.5 bins = np.arange(min_duration, max_duration + bin_width, bin_width) # Convert to numpy arrays clipping_array = np.array([ float(x) if isinstance(x, (float, int)) and x is not None else np.nan for x in clipping_percentage ], dtype=np.float32) duration_array = np.array([ float(x) if isinstance(x, (float, int)) and x is not None else np.nan for x in duration_values ], dtype=np.float32) # Compute average clipping_percentage per duration bin clipping_per_bin = {} x_labels = [] for i in range(len(bins) - 1): start, end = bins[i], bins[i + 1] mask = (duration_array >= start) & (duration_array < end) values_in_bin = clipping_array[mask] values_in_bin = values_in_bin[~np.isnan(values_in_bin)] avg_clip = float(np.mean(values_in_bin)) if len(values_in_bin) > 0 else None key = f"{start}-{end}" clipping_per_bin[key] = avg_clip x_labels.append(key) # Save JSON with open("clipping_percentage_per_duration15-20_bin.json", "w") as f: json.dump(clipping_per_bin, f, indent=2) # Plot heights = [clipping_per_bin[label] if clipping_per_bin[label] is not None else 0 for label in x_labels] plt.figure(figsize=(10, 6)) plt.bar(x_labels, heights, color='teal', edgecolor='black') plt.xlabel("Duration Bin (s)") plt.ylabel("Average Clipping Percentage") plt.title("Average Clipping Percentage per Duration Bin") plt.xticks(rotation=45) plt.tight_layout() plt.savefig("/home/sidd/Desktop/work/IME DATASET REVIEW/Avg_clipping_percentage/clipping_Percent_histogram15-20.jpg") plt.show() import numpy as np import matplotlib.pyplot as plt import json # Define duration bin range min_duration = 20 max_duration = 25 bin_width = 0.5 bins = np.arange(min_duration, max_duration + bin_width, bin_width) # Convert to numpy arrays clipping_array = np.array([ float(x) if isinstance(x, (float, int)) and x is not None else np.nan for x in clipping_percentage ], dtype=np.float32) duration_array = np.array([ float(x) if isinstance(x, (float, int)) and x is not None else np.nan for x in duration_values ], dtype=np.float32) # Compute average clipping_percentage per duration bin clipping_per_bin = {} x_labels = [] for i in range(len(bins) - 1): start, end = bins[i], bins[i + 1] mask = (duration_array >= start) & (duration_array < end) values_in_bin = clipping_array[mask] values_in_bin = values_in_bin[~np.isnan(values_in_bin)] avg_clip = float(np.mean(values_in_bin)) if len(values_in_bin) > 0 else None key = f"{start}-{end}" clipping_per_bin[key] = avg_clip x_labels.append(key) # Save JSON with open("clipping_percentage_per_duration20-25_bin.json", "w") as f: json.dump(clipping_per_bin, f, indent=2) # Plot heights = [clipping_per_bin[label] if clipping_per_bin[label] is not None else 0 for label in x_labels] plt.figure(figsize=(10, 6)) plt.bar(x_labels, heights, color='teal', edgecolor='black') plt.xlabel("Duration Bin (s)") plt.ylabel("Average Clipping Percentage") plt.title("Average Clipping Percentage per Duration Bin") plt.xticks(rotation=45) plt.tight_layout() plt.savefig("/home/sidd/Desktop/work/IME DATASET REVIEW/Avg_clipping_percentage/clipping_Percent_histogram20-25.jpg") plt.show() import numpy as np import matplotlib.pyplot as plt import json # Define duration bin range min_duration = 25 max_duration = 30 bin_width = 0.5 bins = np.arange(min_duration, max_duration + bin_width, bin_width) # Convert to numpy arrays clipping_array = np.array([ float(x) if isinstance(x, (float, int)) and x is not None else np.nan for x in clipping_percentage ], dtype=np.float32) duration_array = np.array([ float(x) if isinstance(x, (float, int)) and x is not None else np.nan for x in duration_values ], dtype=np.float32) # Compute average clipping_percentage per duration bin clipping_per_bin = {} x_labels = [] for i in range(len(bins) - 1): start, end = bins[i], bins[i + 1] mask = (duration_array >= start) & (duration_array < end) values_in_bin = clipping_array[mask] values_in_bin = values_in_bin[~np.isnan(values_in_bin)] avg_clip = float(np.mean(values_in_bin)) if len(values_in_bin) > 0 else None key = f"{start}-{end}" clipping_per_bin[key] = avg_clip x_labels.append(key) # Save JSON with open("clipping_percentage_per_duration25-30bin.json", "w") as f: json.dump(clipping_per_bin, f, indent=2) # Plot heights = [clipping_per_bin[label] if clipping_per_bin[label] is not None else 0 for label in x_labels] plt.figure(figsize=(10, 6)) plt.bar(x_labels, heights, color='teal', edgecolor='black') plt.xlabel("Duration Bin (s)") plt.ylabel("Average Clipping Percentage") plt.title("Average Clipping Percentage per Duration Bin") plt.xticks(rotation=45) plt.tight_layout() plt.savefig("/home/sidd/Desktop/work/IME DATASET REVIEW/Avg_clipping_percentage/clipping_Percent_histogram25-30.jpg") plt.show() ########################_-----------------------------------__SPEAKER COUNT--------------------------------___############################33 import numpy as np import matplotlib.pyplot as plt import json # Work with the Dataset object format # Your data is already loaded in a variable called 'data' # Extract duration and speaker count from the dataset durations = [] speaker_counts = [] # Process each item in the dataset # For HuggingFace/datasets library try: # This should work for most Dataset objects audio_features = data['audio_features'] # If audio_features is directly accessible if isinstance(audio_features, list): for features in audio_features: if features is not None: duration = features.get('duration') speaker_count = features.get('speaker_count') if duration is not None and speaker_count is not None: durations.append(duration) speaker_counts.append(speaker_count) else: # If we need to iterate through the dataset for i in range(len(data)): features = data[i]['audio_features'] if features is not None: duration = features.get('duration') speaker_count = features.get('speaker_count') if duration is not None and speaker_count is not None: durations.append(duration) speaker_counts.append(speaker_count) except Exception as e: print(f"Error accessing dataset: {e}") # Alternative approach if the above doesn't work print("Trying alternative approach...") # If data is a list of dictionaries if isinstance(data, list): for item in data: if isinstance(item, dict) and 'duration' in item and 'speaker_count' in item: duration = item.get('duration') speaker_count = item.get('speaker_count') if duration is not None and speaker_count is not None: durations.append(duration) speaker_counts.append(speaker_count) # Convert to numpy arrays duration_array = np.array(durations) speaker_count_array = np.array(speaker_counts) # Print data summary print(f"Duration array shape: {duration_array.shape}") print(f"Speaker count array shape: {speaker_count_array.shape}") if len(durations) > 0: print(f"Duration range: {np.min(duration_array):.2f} to {np.max(duration_array):.2f} seconds") print(f"Speaker count range: {np.min(speaker_count_array)} to {np.max(speaker_count_array)} speakers") else: print("No valid data extracted!") # Based on your sample, the durations are quite short (around 2-3 seconds) # Adjust min_duration and max_duration to match your actual data min_duration = 0 max_duration = 5 # Increased range to capture more data bin_width = 0.5 bins = np.arange(min_duration, max_duration + bin_width, bin_width) # Count speakers per bin speaker_per_bin = {} x_labels = [] y_values = [] for i in range(len(bins) - 1): mask = (duration_array >= bins[i]) & (duration_array < bins[i+1]) # Count the number of samples in this bin count = np.sum(mask) key = f"{bins[i]}-{bins[i+1]}" speaker_per_bin[key] = int(count) x_labels.append(key) y_values.append(count) # Print counts for debugging print(f"Bin {key}: {count} audio files") # Save to JSON with open("speaker_count_per_duration_bin0-5.json", "w") as f: json.dump(speaker_per_bin, f, indent=2) # Plot the results if sum(y_values) > 0: plt.figure(figsize=(10, 6)) plt.bar(x_labels, y_values, color='orange', edgecolor='black') plt.xticks(rotation=45) plt.xlabel("Duration Bin (s)") plt.ylabel("Count") plt.title("Number of Audio Files per Duration Bin") plt.grid(axis='y') plt.tight_layout() plt.savefig("/home/sidd/Desktop/work/IME DATASET REVIEW/audio_duration/SpeakerCountPerDurationBin0-5.jpg") plt.show() else: print("No data found in the specified duration range! Try adjusting your min_duration and max_duration.") # If no data in specified range, show the actual duration distribution print("\nAnalyzing your actual data distribution...") actual_min = np.min(duration_array) actual_max = np.max(duration_array) print(f"Your data ranges from {actual_min:.2f} to {actual_max:.2f} seconds") # Suggest a better range based on actual data hist, bin_edges = np.histogram(duration_array, bins=10) print("Top duration ranges in your data:") for i in range(len(hist)): if hist[i] > 0: print(f"{bin_edges[i]:.2f}-{bin_edges[i+1]:.2f} seconds: {hist[i]} samples") import numpy as np import matplotlib.pyplot as plt import json import os # Create output directory if it doesn't exist output_dir = "/home/sidd/Desktop/work/IME DATASET REVIEW/audio_duration" os.makedirs(output_dir, exist_ok=True) # Define duration ranges to analyze duration_ranges = [ (5, 10), (10, 15), (15, 20), (20, 25), (25, 30) ] # Extract duration and speaker count from the dataset durations = [] speaker_counts = [] # Process each item in the dataset try: # For HuggingFace datasets audio_features = data['audio_features'] if isinstance(audio_features, list): for features in audio_features: if features is not None: duration = features.get('duration') speaker_count = features.get('speaker_count') if duration is not None and speaker_count is not None: durations.append(duration) speaker_counts.append(speaker_count) else: # If we need to iterate through the dataset for i in range(len(data)): features = data[i]['audio_features'] if features is not None: duration = features.get('duration') speaker_count = features.get('speaker_count') if duration is not None and speaker_count is not None: durations.append(duration) speaker_counts.append(speaker_count) except Exception as e: print(f"Error accessing dataset: {e}") # Alternative approach if the above doesn't work print("Trying alternative approach...") # If data is a list of dictionaries if isinstance(data, list): for item in data: if isinstance(item, dict) and 'duration' in item and 'speaker_count' in item: duration = item.get('duration') speaker_count = item.get('speaker_count') if duration is not None and speaker_count is not None: durations.append(duration) speaker_counts.append(speaker_count) # Convert to numpy arrays duration_array = np.array(durations) speaker_count_array = np.array(speaker_counts) # Print overall data summary print(f"Total data points extracted: {len(durations)}") if len(durations) > 0: print(f"Overall duration range: {np.min(duration_array):.2f} to {np.max(duration_array):.2f} seconds") print(f"Overall speaker count range: {np.min(speaker_count_array)} to {np.max(speaker_count_array)} speakers") else: print("No valid data extracted!") exit() # Process each duration range for min_duration, max_duration in duration_ranges: print(f"\nProcessing duration range {min_duration}-{max_duration} seconds...") # Filter data for this range range_mask = (duration_array >= min_duration) & (duration_array < max_duration) range_count = np.sum(range_mask) print(f"Found {range_count} audio files in this range") # If no data in this range, skip to the next if range_count == 0: print(f"No data in the {min_duration}-{max_duration} second range, skipping...") continue # Define bins for this range bin_width = 0.5 bins = np.arange(min_duration, max_duration + bin_width, bin_width) # Count speakers per bin speaker_per_bin = {} x_labels = [] y_values = [] for i in range(len(bins) - 1): mask = (duration_array >= bins[i]) & (duration_array < bins[i+1]) # Count the number of samples in this bin count = np.sum(mask) key = f"{bins[i]}-{bins[i+1]}" speaker_per_bin[key] = int(count) x_labels.append(key) y_values.append(count) # Print counts for debugging print(f"Bin {key}: {count} audio files") # Save to JSON for this range json_filename = f"speaker_count_per_duration_bin{min_duration}-{max_duration}.json" json_path = os.path.join(output_dir, json_filename) with open(json_path, "w") as f: json.dump(speaker_per_bin, f, indent=2) print(f"Saved results to {json_path}") # Plot the results for this range plt.figure(figsize=(12, 6)) plt.bar(x_labels, y_values, color='orange', edgecolor='black') plt.xticks(rotation=90) plt.xlabel("Duration Bin (s)") plt.ylabel("Count") plt.title(f"Number of Audio Files per Duration Bin ({min_duration}-{max_duration}s)") plt.grid(axis='y') plt.tight_layout() # Save the plot for this range plot_filename = f"SpeakerCountPerDurationBin{min_duration}-{max_duration}.jpg" plot_path = os.path.join(output_dir, plot_filename) plt.savefig(plot_path) print(f"Saved plot to {plot_path}") plt.close() print("\nAll duration ranges processed!") # Create a combined plot showing summary for all ranges range_counts = [] range_labels = [] for min_duration, max_duration in duration_ranges: range_mask = (duration_array >= min_duration) & (duration_array < max_duration) range_count = np.sum(range_mask) range_counts.append(range_count) range_labels.append(f"{min_duration}-{max_duration}s") # Plot the summary plt.figure(figsize=(10, 6)) plt.bar(range_labels, range_counts, color='blue', edgecolor='black') plt.xlabel("Duration Range (seconds)") plt.ylabel("Number of Audio Files") plt.title("Distribution of Audio Files Across Duration Ranges") plt.grid(axis='y') plt.tight_layout() # Save the summary plot summary_path = os.path.join(output_dir, "DurationRangeSummary.jpg") plt.savefig(summary_path) print(f"Saved summary plot to {summary_path}") plt.close() print("All processing completed successfully!")