Datasets:
metadata
license: cc-by-nc-4.0
task_categories:
- tabular-classification
language:
- en
tags:
- evaluation
- metrics
- setfit
- water-conflict
- multi-label-classification
size_categories:
- n<1K
pretty_name: Water Conflict Classifier Evaluation Metrics
Water Conflict Classifier Evaluation Metrics
Evaluation metrics tracking the performance of the Water Conflict Classifier across multiple training iterations and model configurations.
Dataset Summary
This dataset contains evaluation results from training runs of the Water Conflict Classifier, a multi-label SetFit model that identifies water-related conflict events in news headlines. Each row represents one model version with comprehensive performance metrics across three classification labels: Trigger, Casualty, and Weapon.
Related Links:
Dataset Structure
Fields
| Field | Type | Description |
|---|---|---|
version |
string | Model version identifier (v1.0, v2.0, etc.) |
timestamp |
string | Training completion timestamp |
base_model |
string | Base embedding model used |
train_size |
int | Number of training examples |
test_size |
int | Number of test examples |
f1_micro |
float | Micro-averaged F1 score |
f1_macro |
float | Macro-averaged F1 score |
accuracy |
float | Overall accuracy |
trigger_* |
float | Precision/recall/F1 for Trigger label |
casualty_* |
float | Precision/recall/F1 for Casualty label |
weapon_* |
float | Precision/recall/F1 for Weapon label |
model_repo |
string | HuggingFace model repository |
Model Versions
The dataset tracks performance across different configurations:
- Base models: BAAI/bge-small-en-v1.5, sentence-transformers/all-MiniLM-L6-v2
- Training strategies: undersampling for class balance
- Hyperparameter variations: batch size, epochs, sample size
Usage
from datasets import load_dataset
# Load the evaluation metrics
evals = load_dataset("baobabtech/water-conflict-classifier-evals")
# Compare model versions
import pandas as pd
df = pd.DataFrame(evals['train'])
print(df[['version', 'f1_macro', 'accuracy']].sort_values('f1_macro', ascending=False))
Citation
If you use this dataset or the Water Conflict Classifier in your research, please cite:
@misc{baobab_water_conflict_classifier,
author = {Mills, Olivier},
title = {Water Conflict Classifier: Few-Shot Learning for Water-Related Conflict Event Detection},
year = {2025},
publisher = {Hugging Face},
howpublished = {\url{https://huggingface.co/baobabtech/water-conflict-classifier}}
}
License
CC-BY-NC-4.0 (Non-commercial use only)
Contact
Olivier Mills
Website: baobabtech.ai
LinkedIn: oliviermills