Commit
·
9bae2e6
1
Parent(s):
ecf5b98
upload hubscripts/scai_chemical_hub.py to hub from bigbio repo
Browse files- scai_chemical.py +257 -0
scai_chemical.py
ADDED
|
@@ -0,0 +1,257 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
|
| 16 |
+
"""
|
| 17 |
+
A dataset loader for the SCAI Chemical dataset.
|
| 18 |
+
|
| 19 |
+
SCAI Chemical is a corpus of MEDLINE abstracts that has been annotated
|
| 20 |
+
to give an overview of the different chemical name classes
|
| 21 |
+
found in MEDLINE text.
|
| 22 |
+
"""
|
| 23 |
+
|
| 24 |
+
import gzip
|
| 25 |
+
from typing import Dict, List, Tuple
|
| 26 |
+
|
| 27 |
+
import datasets
|
| 28 |
+
|
| 29 |
+
from .bigbiohub import kb_features
|
| 30 |
+
from .bigbiohub import BigBioConfig
|
| 31 |
+
from .bigbiohub import Tasks
|
| 32 |
+
|
| 33 |
+
_LANGUAGES = ['English']
|
| 34 |
+
_PUBMED = True
|
| 35 |
+
_LOCAL = False
|
| 36 |
+
_CITATION = """\
|
| 37 |
+
@inproceedings{kolarik:lrec-ws08,
|
| 38 |
+
author = {Kol{\'a}{\vr}ik, Corinna and Klinger, Roman and Friedrich, Christoph M and Hofmann-Apitius, Martin and Fluck, Juliane},
|
| 39 |
+
title = {Chemical Names: {T}erminological Resources and Corpora Annotation},
|
| 40 |
+
booktitle = {LREC Workshop on Building and Evaluating Resources for Biomedical Text Mining},
|
| 41 |
+
year = {2008},
|
| 42 |
+
}
|
| 43 |
+
"""
|
| 44 |
+
|
| 45 |
+
_DATASETNAME = "scai_chemical"
|
| 46 |
+
_DISPLAYNAME = "SCAI Chemical"
|
| 47 |
+
|
| 48 |
+
_DESCRIPTION = """\
|
| 49 |
+
SCAI Chemical is a corpus of MEDLINE abstracts that has been annotated
|
| 50 |
+
to give an overview of the different chemical name classes
|
| 51 |
+
found in MEDLINE text.
|
| 52 |
+
"""
|
| 53 |
+
|
| 54 |
+
_HOMEPAGE = "https://www.scai.fraunhofer.de/en/business-research-areas/bioinformatics/downloads/corpora-for-chemical-entity-recognition.html"
|
| 55 |
+
|
| 56 |
+
_LICENSE = 'License information unavailable'
|
| 57 |
+
|
| 58 |
+
_URLS = {
|
| 59 |
+
_DATASETNAME: "https://www.scai.fraunhofer.de/content/dam/scai/de/downloads/bioinformatik/Corpora-for-Chemical-Entity-Recognition/chemicals-test-corpus-27-04-2009-v3_iob.gz",
|
| 60 |
+
}
|
| 61 |
+
|
| 62 |
+
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION]
|
| 63 |
+
|
| 64 |
+
_SOURCE_VERSION = "3.0.0"
|
| 65 |
+
|
| 66 |
+
_BIGBIO_VERSION = "1.0.0"
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
class ScaiChemicalDataset(datasets.GeneratorBasedBuilder):
|
| 70 |
+
"""SCAI Chemical is a dataset annotated in 2008 with mentions of chemicals."""
|
| 71 |
+
|
| 72 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
| 73 |
+
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
|
| 74 |
+
|
| 75 |
+
BUILDER_CONFIGS = [
|
| 76 |
+
BigBioConfig(
|
| 77 |
+
name="scai_chemical_source",
|
| 78 |
+
version=SOURCE_VERSION,
|
| 79 |
+
description="SCAI Chemical source schema",
|
| 80 |
+
schema="source",
|
| 81 |
+
subset_id="scai_chemical",
|
| 82 |
+
),
|
| 83 |
+
BigBioConfig(
|
| 84 |
+
name="scai_chemical_bigbio_kb",
|
| 85 |
+
version=BIGBIO_VERSION,
|
| 86 |
+
description="SCAI Chemical BigBio schema",
|
| 87 |
+
schema="bigbio_kb",
|
| 88 |
+
subset_id="scai_chemical",
|
| 89 |
+
),
|
| 90 |
+
]
|
| 91 |
+
|
| 92 |
+
DEFAULT_CONFIG_NAME = "scai_chemical_source"
|
| 93 |
+
|
| 94 |
+
def _info(self) -> datasets.DatasetInfo:
|
| 95 |
+
if self.config.schema == "source":
|
| 96 |
+
features = datasets.Features(
|
| 97 |
+
{
|
| 98 |
+
"document_id": datasets.Value("string"),
|
| 99 |
+
"text": datasets.Value("string"),
|
| 100 |
+
"tokens": [
|
| 101 |
+
{
|
| 102 |
+
"offsets": [datasets.Value("int64")],
|
| 103 |
+
"text": datasets.Value("string"),
|
| 104 |
+
"tag": datasets.Value("string"),
|
| 105 |
+
}
|
| 106 |
+
],
|
| 107 |
+
"entities": [
|
| 108 |
+
{
|
| 109 |
+
"offsets": [datasets.Value("int64")],
|
| 110 |
+
"text": datasets.Value("string"),
|
| 111 |
+
"type": datasets.Value("string"),
|
| 112 |
+
}
|
| 113 |
+
],
|
| 114 |
+
}
|
| 115 |
+
)
|
| 116 |
+
|
| 117 |
+
elif self.config.schema == "bigbio_kb":
|
| 118 |
+
features = kb_features
|
| 119 |
+
else:
|
| 120 |
+
raise ValueError("Unrecognized schema: %s" % self.config.schema)
|
| 121 |
+
|
| 122 |
+
return datasets.DatasetInfo(
|
| 123 |
+
description=_DESCRIPTION,
|
| 124 |
+
features=features,
|
| 125 |
+
homepage=_HOMEPAGE,
|
| 126 |
+
license=str(_LICENSE),
|
| 127 |
+
citation=_CITATION,
|
| 128 |
+
)
|
| 129 |
+
|
| 130 |
+
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]:
|
| 131 |
+
"""Returns SplitGenerators."""
|
| 132 |
+
url = _URLS[_DATASETNAME]
|
| 133 |
+
filepath = dl_manager.download(url)
|
| 134 |
+
|
| 135 |
+
return [
|
| 136 |
+
datasets.SplitGenerator(
|
| 137 |
+
name=datasets.Split.TRAIN,
|
| 138 |
+
gen_kwargs={
|
| 139 |
+
"filepath": filepath,
|
| 140 |
+
"split": "train",
|
| 141 |
+
},
|
| 142 |
+
),
|
| 143 |
+
]
|
| 144 |
+
|
| 145 |
+
def _generate_examples(self, filepath, split: str) -> Tuple[int, Dict]:
|
| 146 |
+
"""Yields examples as (key, example) tuples."""
|
| 147 |
+
|
| 148 |
+
# Iterates through lines in file, collecting all lines belonging
|
| 149 |
+
# to an example and converting into a single dict
|
| 150 |
+
examples = []
|
| 151 |
+
tokens = None
|
| 152 |
+
with gzip.open(filepath, "rt", encoding="mac_roman") as data_file:
|
| 153 |
+
print(filepath)
|
| 154 |
+
for line in data_file:
|
| 155 |
+
line = line.strip()
|
| 156 |
+
if line.startswith("###"):
|
| 157 |
+
tokens = [line]
|
| 158 |
+
elif line == "":
|
| 159 |
+
examples.append(self._make_example(tokens))
|
| 160 |
+
else:
|
| 161 |
+
tokens.append(line)
|
| 162 |
+
|
| 163 |
+
# Returns the examples using the desired schema
|
| 164 |
+
if self.config.schema == "source":
|
| 165 |
+
for i, example in enumerate(examples):
|
| 166 |
+
yield i, example
|
| 167 |
+
|
| 168 |
+
elif self.config.schema == "bigbio_kb":
|
| 169 |
+
for i, example in enumerate(examples):
|
| 170 |
+
bigbio_example = {
|
| 171 |
+
"id": "example-" + str(i),
|
| 172 |
+
"document_id": example["document_id"],
|
| 173 |
+
"passages": [
|
| 174 |
+
{
|
| 175 |
+
"id": "passage-" + str(i),
|
| 176 |
+
"type": "abstract",
|
| 177 |
+
"text": [example["text"]],
|
| 178 |
+
"offsets": [[0, len(example["text"])]],
|
| 179 |
+
}
|
| 180 |
+
],
|
| 181 |
+
"entities": [],
|
| 182 |
+
"events": [],
|
| 183 |
+
"coreferences": [],
|
| 184 |
+
"relations": [],
|
| 185 |
+
}
|
| 186 |
+
|
| 187 |
+
# Converts entities to BigBio format
|
| 188 |
+
for j, entity in enumerate(example["entities"]):
|
| 189 |
+
bigbio_example["entities"].append(
|
| 190 |
+
{
|
| 191 |
+
"id": "entity-" + str(i) + "-" + str(j),
|
| 192 |
+
"offsets": [entity["offsets"]],
|
| 193 |
+
"text": [entity["text"]],
|
| 194 |
+
"type": entity["type"],
|
| 195 |
+
"normalized": [],
|
| 196 |
+
}
|
| 197 |
+
)
|
| 198 |
+
|
| 199 |
+
yield i, bigbio_example
|
| 200 |
+
|
| 201 |
+
@staticmethod
|
| 202 |
+
def _make_example(tokens):
|
| 203 |
+
"""
|
| 204 |
+
Converts a list of lines representing tokens into an example dictionary
|
| 205 |
+
formatted according to the source schema
|
| 206 |
+
|
| 207 |
+
:param tokens: list of strings
|
| 208 |
+
:return: dictionary in the source schema
|
| 209 |
+
"""
|
| 210 |
+
document_id = tokens[0][4:]
|
| 211 |
+
|
| 212 |
+
text = ""
|
| 213 |
+
processed_tokens = []
|
| 214 |
+
entities = []
|
| 215 |
+
last_offset = 0
|
| 216 |
+
|
| 217 |
+
for token in tokens[1:]:
|
| 218 |
+
token_pieces = token.split("\t")
|
| 219 |
+
if len(token_pieces) != 5:
|
| 220 |
+
raise ValueError("Failed to parse line: %s" % token)
|
| 221 |
+
|
| 222 |
+
token_text = str(token_pieces[0])
|
| 223 |
+
token_start = int(token_pieces[1])
|
| 224 |
+
token_end = int(token_pieces[2])
|
| 225 |
+
entity_text = str(token_pieces[3])
|
| 226 |
+
token_tag = str(token_pieces[4])[1:]
|
| 227 |
+
|
| 228 |
+
if token_start > last_offset:
|
| 229 |
+
for _ in range(token_start - last_offset):
|
| 230 |
+
text += " "
|
| 231 |
+
elif token_start < last_offset:
|
| 232 |
+
raise ValueError("Invalid start index: %s" % token)
|
| 233 |
+
last_offset = token_end
|
| 234 |
+
|
| 235 |
+
text += token_text
|
| 236 |
+
processed_tokens.append(
|
| 237 |
+
{
|
| 238 |
+
"offsets": [token_start, token_end],
|
| 239 |
+
"text": token_text,
|
| 240 |
+
"tag": token_tag,
|
| 241 |
+
}
|
| 242 |
+
)
|
| 243 |
+
if entity_text != "":
|
| 244 |
+
entities.append(
|
| 245 |
+
{
|
| 246 |
+
"offsets": [token_start, token_start + len(entity_text)],
|
| 247 |
+
"text": entity_text,
|
| 248 |
+
"type": token_tag[2:],
|
| 249 |
+
}
|
| 250 |
+
)
|
| 251 |
+
|
| 252 |
+
return {
|
| 253 |
+
"document_id": document_id,
|
| 254 |
+
"text": text,
|
| 255 |
+
"entities": entities,
|
| 256 |
+
"tokens": processed_tokens,
|
| 257 |
+
}
|