Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
sentiment-classification
Languages:
English
Size:
10K - 100K
ArXiv:
License:
Update lm_finetuning.py
Browse files- lm_finetuning.py +3 -3
lm_finetuning.py
CHANGED
|
@@ -118,7 +118,7 @@ def main():
|
|
| 118 |
eval_dataset=tokenized_datasets[opt.split_validation],
|
| 119 |
compute_metrics=compute_metric_search,
|
| 120 |
model_init=lambda x: AutoModelForSequenceClassification.from_pretrained(
|
| 121 |
-
opt.model, return_dict=True, num_labels=len(
|
| 122 |
)
|
| 123 |
# parameter search
|
| 124 |
if PARALLEL:
|
|
@@ -153,7 +153,7 @@ def main():
|
|
| 153 |
# evaluation
|
| 154 |
model = AutoModelForSequenceClassification.from_pretrained(
|
| 155 |
best_model_path,
|
| 156 |
-
num_labels=len(
|
| 157 |
local_files_only=not network)
|
| 158 |
trainer = Trainer(
|
| 159 |
model=model,
|
|
@@ -166,7 +166,7 @@ def main():
|
|
| 166 |
eval_dataset=tokenized_datasets[opt.split_test],
|
| 167 |
compute_metrics=compute_metric_all,
|
| 168 |
model_init=lambda x: AutoModelForSequenceClassification.from_pretrained(
|
| 169 |
-
opt.model, return_dict=True, num_labels=len(
|
| 170 |
)
|
| 171 |
summary_file = pj(opt.output_dir, opt.summary_file)
|
| 172 |
if not opt.skip_eval:
|
|
|
|
| 118 |
eval_dataset=tokenized_datasets[opt.split_validation],
|
| 119 |
compute_metrics=compute_metric_search,
|
| 120 |
model_init=lambda x: AutoModelForSequenceClassification.from_pretrained(
|
| 121 |
+
opt.model, return_dict=True, num_labels=len(dataset[opt.split_train]['label'][0]))
|
| 122 |
)
|
| 123 |
# parameter search
|
| 124 |
if PARALLEL:
|
|
|
|
| 153 |
# evaluation
|
| 154 |
model = AutoModelForSequenceClassification.from_pretrained(
|
| 155 |
best_model_path,
|
| 156 |
+
num_labels=len(dataset[opt.split_train]['label'][0]),
|
| 157 |
local_files_only=not network)
|
| 158 |
trainer = Trainer(
|
| 159 |
model=model,
|
|
|
|
| 166 |
eval_dataset=tokenized_datasets[opt.split_test],
|
| 167 |
compute_metrics=compute_metric_all,
|
| 168 |
model_init=lambda x: AutoModelForSequenceClassification.from_pretrained(
|
| 169 |
+
opt.model, return_dict=True, num_labels=len(dataset[opt.split_train]['label'][0]))
|
| 170 |
)
|
| 171 |
summary_file = pj(opt.output_dir, opt.summary_file)
|
| 172 |
if not opt.skip_eval:
|