Add 1 new BJJ samples - Version 1.2.0
Browse files- README.md +17 -36
- data-00000-of-00001.arrow +2 -2
- dataset_info.json +0 -4
- state.json +1 -1
README.md
CHANGED
|
@@ -3,22 +3,20 @@ license: mit
|
|
| 3 |
task_categories:
|
| 4 |
- image-classification
|
| 5 |
- keypoint-detection
|
| 6 |
-
- object-detection
|
| 7 |
tags:
|
| 8 |
- martial-arts
|
| 9 |
- bjj
|
| 10 |
- brazilian-jiu-jitsu
|
| 11 |
- pose-detection
|
| 12 |
- sports-analysis
|
| 13 |
-
- keypoint-detection
|
| 14 |
- submissions
|
| 15 |
- grappling
|
| 16 |
- computer-vision
|
| 17 |
language:
|
| 18 |
- en
|
| 19 |
size_categories:
|
| 20 |
-
-
|
| 21 |
-
version: 1.
|
| 22 |
---
|
| 23 |
|
| 24 |
# BJJ Positions & Submissions Dataset
|
|
@@ -34,7 +32,7 @@ This dataset contains pose keypoint annotations for Brazilian Jiu-Jitsu (BJJ) co
|
|
| 34 |
- **Keypoint format**: MS-COCO (17 keypoints per person)
|
| 35 |
- **Data format**: [x, y, confidence] for each keypoint
|
| 36 |
- **Last updated**: 2025-07-21
|
| 37 |
-
- **Version**: 1.
|
| 38 |
|
| 39 |
### Supported Tasks
|
| 40 |
|
|
@@ -46,10 +44,10 @@ This dataset contains pose keypoint annotations for Brazilian Jiu-Jitsu (BJJ) co
|
|
| 46 |
|
| 47 |
## Recent Updates
|
| 48 |
|
| 49 |
-
### Version 1.
|
| 50 |
-
- Added
|
| 51 |
-
- Improved
|
| 52 |
-
- Enhanced
|
| 53 |
|
| 54 |
### Position Distribution
|
| 55 |
|
|
@@ -72,25 +70,15 @@ This dataset contains pose keypoint annotations for Brazilian Jiu-Jitsu (BJJ) co
|
|
| 72 |
- `total_keypoints`: Total visible keypoints across both athletes
|
| 73 |
- `date_added`: Date when sample was added to dataset
|
| 74 |
|
| 75 |
-
###
|
| 76 |
-
|
| 77 |
-
The dataset includes the following BJJ positions and submissions:
|
| 78 |
-
|
| 79 |
-
**Guard Positions:**
|
| 80 |
-
- `open_guard1/2`: Open guard with athlete designation
|
| 81 |
-
- `closed_guard1/2`: Closed guard with athlete designation
|
| 82 |
-
- `half_guard1/2`: Half guard with athlete designation
|
| 83 |
-
- `50_50_guard`: Equal leg entanglement position
|
| 84 |
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
|
| 91 |
-
|
| 92 |
-
- `standing`: Standing position
|
| 93 |
-
- `takedown1/2`: Takedown attempt with initiator designation
|
| 94 |
|
| 95 |
## Usage
|
| 96 |
|
|
@@ -104,7 +92,7 @@ dataset = load_dataset("carlosj934/BJJ_Positions_Submissions")
|
|
| 104 |
sample = dataset['train'][0]
|
| 105 |
print(f"Position: {sample['position']}")
|
| 106 |
print(f"Number of people: {sample['num_people']}")
|
| 107 |
-
print(f"Athlete 1 keypoints: {sample['pose1_keypoints']}")
|
| 108 |
|
| 109 |
# Filter by specific positions
|
| 110 |
guard_samples = dataset['train'].filter(lambda x: 'guard' in x['position'])
|
|
@@ -122,13 +110,6 @@ The dataset is continuously updated with new BJJ position and submission samples
|
|
| 122 |
- **Coverage**: 1/18+ positions represented
|
| 123 |
- **Focus**: High-quality pose annotations for training robust BJJ classifiers
|
| 124 |
|
| 125 |
-
### Data Quality
|
| 126 |
-
|
| 127 |
-
- All poses manually verified and labeled
|
| 128 |
-
- Multiple camera angles per position
|
| 129 |
-
- Diverse athlete body types and sizes
|
| 130 |
-
- Clear, unobstructed pose visibility
|
| 131 |
-
|
| 132 |
## Applications
|
| 133 |
|
| 134 |
This dataset can be used for:
|
|
@@ -148,7 +129,7 @@ If you use this dataset in your research, please cite:
|
|
| 148 |
title={BJJ Positions and Submissions Dataset},
|
| 149 |
author={Carlos J},
|
| 150 |
year={2025},
|
| 151 |
-
version={1.
|
| 152 |
publisher={Hugging Face},
|
| 153 |
url={https://huggingface.co/datasets/carlosj934/BJJ_Positions_Submissions}
|
| 154 |
}
|
|
@@ -160,4 +141,4 @@ MIT License - See LICENSE file for details.
|
|
| 160 |
|
| 161 |
## Contact
|
| 162 |
|
| 163 |
-
For questions or contributions, please reach out through the Hugging Face dataset page
|
|
|
|
| 3 |
task_categories:
|
| 4 |
- image-classification
|
| 5 |
- keypoint-detection
|
|
|
|
| 6 |
tags:
|
| 7 |
- martial-arts
|
| 8 |
- bjj
|
| 9 |
- brazilian-jiu-jitsu
|
| 10 |
- pose-detection
|
| 11 |
- sports-analysis
|
|
|
|
| 12 |
- submissions
|
| 13 |
- grappling
|
| 14 |
- computer-vision
|
| 15 |
language:
|
| 16 |
- en
|
| 17 |
size_categories:
|
| 18 |
+
- n<1K
|
| 19 |
+
version: 1.2.0
|
| 20 |
---
|
| 21 |
|
| 22 |
# BJJ Positions & Submissions Dataset
|
|
|
|
| 32 |
- **Keypoint format**: MS-COCO (17 keypoints per person)
|
| 33 |
- **Data format**: [x, y, confidence] for each keypoint
|
| 34 |
- **Last updated**: 2025-07-21
|
| 35 |
+
- **Version**: 1.2.0
|
| 36 |
|
| 37 |
### Supported Tasks
|
| 38 |
|
|
|
|
| 44 |
|
| 45 |
## Recent Updates
|
| 46 |
|
| 47 |
+
### Version 1.2.0 (2025-07-21)
|
| 48 |
+
- Added 1 total samples
|
| 49 |
+
- Improved data structure for better compatibility
|
| 50 |
+
- Enhanced position annotations
|
| 51 |
|
| 52 |
### Position Distribution
|
| 53 |
|
|
|
|
| 70 |
- `total_keypoints`: Total visible keypoints across both athletes
|
| 71 |
- `date_added`: Date when sample was added to dataset
|
| 72 |
|
| 73 |
+
### Keypoint Format
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
|
| 75 |
+
Uses MS-COCO 17-keypoint format:
|
| 76 |
+
0. nose, 1. left_eye, 2. right_eye, 3. left_ear, 4. right_ear
|
| 77 |
+
5. left_shoulder, 6. right_shoulder, 7. left_elbow, 8. right_elbow
|
| 78 |
+
9. left_wrist, 10. right_wrist, 11. left_hip, 12. right_hip
|
| 79 |
+
13. left_knee, 14. right_knee, 15. left_ankle, 16. right_ankle
|
| 80 |
|
| 81 |
+
Each keypoint: [x, y, confidence] where confidence 0.0-1.0
|
|
|
|
|
|
|
| 82 |
|
| 83 |
## Usage
|
| 84 |
|
|
|
|
| 92 |
sample = dataset['train'][0]
|
| 93 |
print(f"Position: {sample['position']}")
|
| 94 |
print(f"Number of people: {sample['num_people']}")
|
| 95 |
+
print(f"Athlete 1 keypoints: {len(sample['pose1_keypoints'])}")
|
| 96 |
|
| 97 |
# Filter by specific positions
|
| 98 |
guard_samples = dataset['train'].filter(lambda x: 'guard' in x['position'])
|
|
|
|
| 110 |
- **Coverage**: 1/18+ positions represented
|
| 111 |
- **Focus**: High-quality pose annotations for training robust BJJ classifiers
|
| 112 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
## Applications
|
| 114 |
|
| 115 |
This dataset can be used for:
|
|
|
|
| 129 |
title={BJJ Positions and Submissions Dataset},
|
| 130 |
author={Carlos J},
|
| 131 |
year={2025},
|
| 132 |
+
version={1.2.0},
|
| 133 |
publisher={Hugging Face},
|
| 134 |
url={https://huggingface.co/datasets/carlosj934/BJJ_Positions_Submissions}
|
| 135 |
}
|
|
|
|
| 141 |
|
| 142 |
## Contact
|
| 143 |
|
| 144 |
+
For questions or contributions, please reach out through the Hugging Face dataset page.
|
data-00000-of-00001.arrow
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5f60dad2bd584d70e0c118c8492d231825296a0547e2f08b7aca5c350552d861
|
| 3 |
+
size 3328
|
dataset_info.json
CHANGED
|
@@ -24,10 +24,8 @@
|
|
| 24 |
"dtype": "float32",
|
| 25 |
"_type": "Value"
|
| 26 |
},
|
| 27 |
-
"length": 3,
|
| 28 |
"_type": "List"
|
| 29 |
},
|
| 30 |
-
"length": 17,
|
| 31 |
"_type": "List"
|
| 32 |
},
|
| 33 |
"pose1_num_keypoints": {
|
|
@@ -40,10 +38,8 @@
|
|
| 40 |
"dtype": "float32",
|
| 41 |
"_type": "Value"
|
| 42 |
},
|
| 43 |
-
"length": 3,
|
| 44 |
"_type": "List"
|
| 45 |
},
|
| 46 |
-
"length": 17,
|
| 47 |
"_type": "List"
|
| 48 |
},
|
| 49 |
"pose2_num_keypoints": {
|
|
|
|
| 24 |
"dtype": "float32",
|
| 25 |
"_type": "Value"
|
| 26 |
},
|
|
|
|
| 27 |
"_type": "List"
|
| 28 |
},
|
|
|
|
| 29 |
"_type": "List"
|
| 30 |
},
|
| 31 |
"pose1_num_keypoints": {
|
|
|
|
| 38 |
"dtype": "float32",
|
| 39 |
"_type": "Value"
|
| 40 |
},
|
|
|
|
| 41 |
"_type": "List"
|
| 42 |
},
|
|
|
|
| 43 |
"_type": "List"
|
| 44 |
},
|
| 45 |
"pose2_num_keypoints": {
|
state.json
CHANGED
|
@@ -4,7 +4,7 @@
|
|
| 4 |
"filename": "data-00000-of-00001.arrow"
|
| 5 |
}
|
| 6 |
],
|
| 7 |
-
"_fingerprint": "
|
| 8 |
"_format_columns": null,
|
| 9 |
"_format_kwargs": {},
|
| 10 |
"_format_type": null,
|
|
|
|
| 4 |
"filename": "data-00000-of-00001.arrow"
|
| 5 |
}
|
| 6 |
],
|
| 7 |
+
"_fingerprint": "67ff4e686df11486",
|
| 8 |
"_format_columns": null,
|
| 9 |
"_format_kwargs": {},
|
| 10 |
"_format_type": null,
|