--- dataset_info: - config_name: alias-resolution features: - name: form dtype: string - name: type dtype: string - name: mentions dtype: int64 - name: entity dtype: string - name: novel dtype: string splits: - name: train num_bytes: 395702 num_examples: 5985 download_size: 117587 dataset_size: 395702 - config_name: text features: - name: tokens sequence: string - name: novel dtype: string splits: - name: train num_bytes: 10400464 num_examples: 7 download_size: 2673188 dataset_size: 10400464 configs: - config_name: alias-resolution data_files: - split: train path: alias-resolution/train-* - config_name: text data_files: - split: train path: text/train-* --- # 7-romans This dataset contains 7 French novels, entirely annoted for the alias resolution task. See the related [NER dataset](https://huggingface.co/datasets/compnet-renard/7-romans-ner). | **Novel** | **Author** | **Publication Year** | **Number of tokens** | **Number of characters** | |-------------------------|-------------------|--------------------------|----------------------|---------------------------| | Les Trois Mousquetaires | Alexandre Dumas | 1849 | 294 989 | 213 | | Le Rouge et le Noir | Stendhal | 1854 | 216 445 | 318 | | Eugénie Grandet | Honoré de Balzac | 1855 | 80 659 | 107 | | Germinal | Émile Zola | 1885 | 220 273 | 102 | | Bel-Ami | Guy de Maupassant | 1901 | 138 156 | 150 | | Notre-Dame de Paris | Victor Hugo | 1904 | 221 351 | 536 | | Madame Bovary | Gustave Flaubert | 1910 | 148 861 | 175 | This gold standard corpus was created in the context of a project at the ObTIC laboratory, Sorbonne University. The project was directed by Motasem Alrahabi, and annnotations were performed by Perrine Maurel, Una Faller and Romaric Parnasse. The corpus was then used to train a [CamemBERT NER model](https://huggingface.co/compnet-renard/camembert-base-literary-NER-v2) in collaboration with Arthur Amalvy and Vincent Labatut, from Avignon University. # Usage To load the alias resolution data: ```python >>> from datasets import load_dataset >>> dataset = load_dataset("compnet-renard/7-romans-alias-resolution", "alias-resolution") >>> dataset["train"][0] {'form': 'À la belle vue', 'type': 'LOC', 'mentions': 1, 'entity': '?', 'novel': 'BelAmi'} ``` Only the PER entities are annotated: other types only have a "?" in their entity field. The novel texts themselves are in a separate configuration: ```python >>> dataset = load_dataset("compnet-renard/7-romans-alias-resolution", "text") >>> dataset["train"].features {'tokens': Sequence(feature=Value(dtype='string', id=None), length=-1, id=None), 'novel': Value(dtype='string', id=None)} ``` # Citation If you use this dataset in your research, please cite: ```bibtex @InProceedings{Maurel2025, authors = {Maurel, P. and Amalvy, A. and Labatut, V. and Alrahabi, M.}, title = {Du repérage à l’analyse : un modèle pour la reconnaissance d’entités nommées dans les textes littéraires en français}, booktitle = {Digital Humanities 2025}, year = {2025}, } ```