File size: 22,112 Bytes
c034944 23006a5 c034944 23006a5 54e2f0b 23006a5 c034944 54e2f0b 23006a5 c034944 23006a5 c034944 23006a5 c034944 23006a5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 |
"""
Data processing module for MLPerf benchmark data.
"""
import glob
import json
import logging
import os
import re
from collections import defaultdict
from datetime import datetime
import polars as pl
from datasets import Dataset
logger = logging.getLogger(__name__)
FEATURES = {
"Performance": {
"metrics.result": "continuous",
"metrics.result_per_accelerator": "continuous",
"metrics.accuracy": "continuous",
},
"Model": {
"model.name": "categorical",
"model.mlperf_name": "categorical",
"model.architecture": "categorical",
"model.number_of_parameters": "continuous",
"model.weight_data_types": "categorical",
},
"Accelerator": {
"system.accelerator.vendor": "categorical",
"system.accelerator.name": "categorical",
"system.accelerator.count_per_node": "continuous",
"system.accelerator.total_count": "continuous",
"system.accelerator.memory_capacity": "continuous",
"system.accelerator.memory_config": "text",
"system.interconnect.accelerator": "categorical",
},
"CPU": {
"system.cpu.vendor": "categorical",
"system.cpu.model": "categorical",
"system.cpu.core_count": "continuous",
"system.cpu.count_per_node": "continuous",
"system.cpu.frequency": "continuous",
"system.cpu.caches": "text",
"system.cpu.vcpu_count": "continuous",
},
"System": {
"system.name": "text",
"system.type": "categorical",
"system.cooling": "categorical",
"system.number_of_nodes": "continuous",
"system.memory.capacity": "continuous",
"system.memory.configuration": "text",
"system.interconnect.accelerator_host": "categorical",
},
"Software": {
"software.framework": "categorical",
"software.version": "categorical",
"software.operating_system": "categorical",
},
"Submission": {
"submission.organization": "categorical",
"submission.division": "categorical",
"submission.scenario": "categorical",
"submission.availability": "boolean",
"submission.debug_uid": "text",
},
}
MISSING_VALUES = defaultdict(set)
def get_feature_type(feature_name: str) -> str:
"""Get the type of a feature from the FEATURES dictionary."""
for group in FEATURES.values():
if feature_name in group:
return group[feature_name]
return "categorical"
def find_result_files(base_path: str = "semi-raw-mlperf-data") -> list[str]:
"""Find all cmx-result-summary.json files."""
return glob.glob(
os.path.join(base_path, "**/cmx-result-summary.json"), recursive=True
)
def load_raw_data(base_path: str = "semi-raw-mlperf-data") -> pl.DataFrame:
"""Load and merge data from MLPerf result files."""
result_files = find_result_files(base_path)
logger.info(f"Found {len(result_files)} result files")
all_records = []
for file_path in result_files:
with open(file_path, "r") as f:
all_records.extend(json.loads(f.read()))
df = pl.DataFrame(all_records, infer_schema_length=None)
logger.info(f"Loaded {len(df)} raw benchmark records")
rename_map = {
"Accuracy": "metrics.accuracy",
"Availability": "submission.availability",
"Organization": "submission.organization",
"Division": "submission.division",
"Scenario": "submission.scenario",
"Result": "metrics.result",
"Units": "metrics.units",
"MlperfModel": "model.mlperf_name",
"Model": "model.name",
"weight_data_types": "model.weight_data_types",
"framework": "software.framework",
"operating_system": "software.operating_system",
"SystemName": "system.name",
"system.system_name": "system.name",
"SystemType": "system.type",
"system.system_type": "system.type",
"accelerator_model_name": "system.accelerator.name",
"system.accelerator_model_name": "system.accelerator.name",
"number_of_nodes": "system.number_of_nodes",
"accelerators_per_node": "system.accelerator.count_per_node",
"system.accelerators_per_node": "system.accelerator.count_per_node",
"host_processor_core_count": "system.cpu.core_count",
"system.host_processor_core_count": "system.cpu.core_count",
"host_processor_model_name": "system.cpu.model",
"system.host_processor_model_name": "system.cpu.model",
"host_processors_per_node": "system.cpu.count_per_node",
"system.host_processors_per_node": "system.cpu.count_per_node",
"cooling": "system.cooling",
"system.cooling": "system.cooling",
"system.accelerator_host_interconnect": "system.interconnect.accelerator_host",
"system.accelerator_interconnect": "system.interconnect.accelerator",
"system.accelerator_memory_capacity": "system.accelerator.memory_capacity",
"system.accelerator_memory_configuration": "system.accelerator.memory_config",
"system.host_memory_capacity": "system.memory.capacity",
"system.host_memory_configuration": "system.memory.configuration",
"system.host_processor_frequency": "system.cpu.frequency",
"system.host_processor_caches": "system.cpu.caches",
"system.host_processor_vcpu_count": "system.cpu.vcpu_count",
"benchmark_name": "benchmark.name",
"benchmark_version": "benchmark.version",
"datetime_last_commit": "datetime",
"debug_uid": "submission.debug_uid",
}
for old_name, new_name in rename_map.items():
if old_name in df.columns:
if new_name in df.columns:
df = df.drop(new_name)
df = df.rename({old_name: new_name})
columns_to_select = list(set(rename_map.values()))
return df.select([col for col in columns_to_select if col in df.columns])
def is_within_tolerance(value1: float, value2: float, tolerance: float = 0.1) -> bool:
"""Check if two values are within a specified tolerance."""
if value1 is None or value2 is None:
return value1 == value2
if value1 == 0 or value2 == 0:
return value1 == value2
percentage_diff = abs(value1 - value2) / max(abs(value1), abs(value2))
return percentage_diff <= tolerance
def find_similar_configurations(
df: pl.DataFrame, query_config: dict, continuous_tolerance: float = 0.1
) -> pl.DataFrame:
"""Find configurations similar to the query_config."""
mask = pl.lit(True)
for feature, value in query_config.items():
if value is None:
continue
if get_feature_type(feature) == "continuous":
lower_bound = value * (1 - continuous_tolerance)
upper_bound = value * (1 + continuous_tolerance)
feature_mask = (pl.col(feature) >= lower_bound) & (
pl.col(feature) <= upper_bound
)
else:
feature_mask = pl.col(feature) == value
mask = mask & feature_mask
return df.filter(mask)
def convert_datetime_to_iso(value: str) -> str | None:
"""Convert datetime string to ISO 8601 format."""
if not value or value in ["", "N/A", "null"]:
MISSING_VALUES["datetime_values"].add(str(value))
return None
try:
# Handle format like "2025/04/03_22:56:53"
if "/" in value and "_" in value:
# Replace / with - and _ with T for ISO format
iso_value = value.replace("/", "-").replace("_", "T")
# Validate by parsing
datetime.fromisoformat(iso_value)
return iso_value
# Try to parse other common formats and convert to ISO
# Add more format patterns as needed
for fmt in ["%Y-%m-%d %H:%M:%S", "%Y/%m/%d %H:%M:%S", "%Y-%m-%dT%H:%M:%S"]:
try:
dt = datetime.strptime(value, fmt)
return dt.isoformat()
except ValueError:
continue
# If no format matches, log as missing value
MISSING_VALUES["datetime_values"].add(str(value))
return None
except Exception as e:
MISSING_VALUES["datetime_values"].add(str(value))
return None
def convert_memory_to_gb(value: str) -> float | None:
"""Convert memory string to GB."""
if value is None:
return None
if "+" in value:
left, right = value.split("+", 1)
return (convert_memory_to_gb(left) or 0.0) + (
convert_memory_to_gb(right) or 0.0
) or None
value = value.replace(" ", "").upper()
numeric = ""
for char in value:
if char.isdigit() or char == ".":
numeric += char
else:
break
if not numeric:
return None
number = float(numeric)
if "TB" in value or "TIB" in value:
return number * 1024
elif "GB" in value or "GIB" in value:
return number
else:
return None
def convert_frequency_to_ghz(value: str) -> float | None:
"""Convert frequency string to GHz."""
if not value or value == "undefined":
MISSING_VALUES["frequency_values"].add(str(value))
return None
value = value.strip().upper()
if value.isdigit():
return float(value) / 1000
matches = re.findall(r"([\d.]+)\s*(?:GHZ|MHZ)?", value, re.IGNORECASE)
if not matches:
MISSING_VALUES["frequency_values"].add(str(value))
return None
frequencies = [float(match) for match in matches]
max_freq = max(frequencies)
if "MHZ" in value.upper():
max_freq /= 1000
return max_freq
def extract_accelerator_vendor(name: str) -> str | None:
"""Extract vendor from accelerator name."""
if name is None:
MISSING_VALUES["accelerator_names"].add(None)
return None
name_upper = name.upper()
known_vendors = {
"NVIDIA": ["NVIDIA", "TESLA", "A100", "H100", "T4"],
"AMD": ["AMD"],
"Intel": ["INTEL", "HABANA", "GAUDI"],
"Google": ["TPU", "TRILLIUM", "LPU", "VPU"],
"Qualcomm": ["QUALCOMM", "ADRENO", "HEXAGON", "CLOUD AI 100", "SNAPDRAGON"],
"UntetherAI": ["UNTETHERAIR", "SPEEDAI"],
"Huawei": ["DAVINCI"],
"Moffett": ["MOFFETT"],
}
for vendor, keywords in known_vendors.items():
if any(keyword in name_upper for keyword in keywords):
return vendor
MISSING_VALUES["accelerator_vendors"].add(name)
return None
def extract_cpu_vendor(name: str) -> str | None:
"""Extract vendor from CPU model name."""
if name is None:
MISSING_VALUES["cpu_names"].add(None)
return None
name_upper = name.upper()
known_vendors = {
"AMD": ["AMD", "EPYC"],
"Intel": ["INTEL", "XEON"],
"NVIDIA": ["NVIDIA", "GRACE"],
"ARM": ["ARM", "CORTEX", "NEOVERSE", "ARMV8"],
"AWS": ["AWS", "GRAVITON"],
"Apple": ["APPLE", "M1", "M2", "M3"],
"Qualcomm": ["QUALCOMM", "SNAPDRAGON"],
}
for vendor, keywords in known_vendors.items():
if any(keyword in name_upper for keyword in keywords):
return vendor
MISSING_VALUES["cpu_vendors"].add(name)
return None
def extract_framework_info(framework_str: str) -> list[tuple[str, str]]:
"""Extract framework name-version pairs."""
if not framework_str:
return []
results = []
for item in framework_str.split(","):
item = item.strip()
name_match = re.search(r"(\w+)\s+", item)
version_match = re.search(r"\s+([\d\.]+)", item)
if name_match and version_match:
name = name_match.group(1).lower()
version = version_match.group(1)
results.append((name, version.strip(".")))
return results
def clean_string_value(value: str) -> str | None:
"""Clean empty and N/A string values."""
if value.upper() in ["", "N/A", "DUMMY"]:
return None
return value
def normalize_interconnect_type(value: str) -> str | None:
"""Normalize interconnect type strings."""
if value is None or value.upper() in ["TBD", "TODO", "TODD"]:
MISSING_VALUES["interconnect_types"].add(str(value))
return None
value_upper = value.upper()
if "NVLINK" in value_upper:
if any(gen in value_upper for gen in ["5TH", "5TH-GEN"]):
return "NVLink-5"
elif any(gen in value_upper for gen in ["4TH", "4TH-GEN"]):
return "NVLink-4"
else:
return "NVLink"
if "PCIE" in value_upper:
if "GEN5" in value_upper.replace(" ", ""):
return "PCIe-5"
else:
return "PCIe"
if "INFINIBAND" in value_upper:
return "InfiniBand"
if "XGMI" in value_upper:
return "XGMI"
return value
def clean_string_values(
df: pl.DataFrame, string_columns: list[str] | None = None
) -> pl.DataFrame:
"""Clean string values in specified columns."""
if string_columns is None:
string_columns = [col for col in df.columns if df[col].dtype == pl.String]
return df.with_columns(
[
pl.col(col).map_elements(clean_string_value, return_dtype=str).alias(col)
for col in string_columns
]
)
def filter_submissions(df: pl.DataFrame) -> pl.DataFrame:
"""Keep only valid token/s submissions."""
return df.filter(
(pl.col("metrics.units") == "Tokens/s")
& (pl.col("metrics.result").is_not_null())
& (pl.col("metrics.result") != 0)
& (pl.col("metrics.result").is_finite())
& (pl.col("system.accelerator.total_count") > 0)
)
def normalize_memory_values(df: pl.DataFrame) -> pl.DataFrame:
"""Convert memory values to GB."""
return df.with_columns(
[
pl.col("system.accelerator.memory_capacity")
.map_elements(convert_memory_to_gb, return_dtype=float)
.alias("system.accelerator.memory_capacity"),
pl.col("system.memory.capacity")
.map_elements(convert_memory_to_gb, return_dtype=float)
.alias("system.memory.capacity"),
]
)
def normalize_datetime_values(df: pl.DataFrame) -> pl.DataFrame:
"""Convert datetime values to ISO 8601 format."""
if "datetime" in df.columns:
return df.with_columns(
pl.col("datetime")
.map_elements(convert_datetime_to_iso, return_dtype=str)
.alias("datetime")
)
return df
def add_vendor_columns(df: pl.DataFrame) -> pl.DataFrame:
"""Add vendor columns based on model names."""
return df.with_columns(
[
pl.col("system.accelerator.name")
.map_elements(extract_accelerator_vendor, return_dtype=str)
.alias("system.accelerator.vendor"),
pl.col("system.cpu.model")
.map_elements(extract_cpu_vendor, return_dtype=str)
.alias("system.cpu.vendor"),
]
)
def normalize_interconnect_values(df: pl.DataFrame) -> pl.DataFrame:
"""Normalize interconnect values."""
return df.with_columns(
[
pl.col("system.interconnect.accelerator")
.map_elements(normalize_interconnect_type, return_dtype=str)
.alias("system.interconnect.accelerator"),
pl.col("system.interconnect.accelerator_host")
.map_elements(normalize_interconnect_type, return_dtype=str)
.alias("system.interconnect.accelerator_host"),
]
)
def extract_framework_columns(df: pl.DataFrame) -> pl.DataFrame:
"""Extract framework versions into separate columns."""
df_with_id = df.with_columns(pl.Series(name="row_id", values=range(len(df))))
framework_info = []
for idx, framework_str in enumerate(df["software.framework"]):
if framework_str is not None:
for name, version in extract_framework_info(framework_str):
framework_info.append({"row_id": idx, "name": name, "version": version})
if not framework_info:
return df
df_frameworks = pl.DataFrame(framework_info)
df_pivoted = df_frameworks.pivot(
values="version",
index="row_id",
on="name",
aggregate_function="first",
)
rename_dict = {
col: f"software.framework.{col}"
for col in df_pivoted.columns
if col != "row_id"
}
df_pivoted = df_pivoted.rename(rename_dict)
return df_with_id.join(df_pivoted, on="row_id", how="left").drop("row_id")
def cast_columns(df: pl.DataFrame) -> pl.DataFrame:
"""Cast columns to proper types."""
column_types = {
"system.cpu.core_count": pl.Int64,
"system.accelerator.count_per_node": pl.Int64,
"system.cpu.count_per_node": pl.Int64,
"system.number_of_nodes": pl.Int64,
}
df = df.with_columns(
pl.col("system.cpu.frequency")
.map_elements(convert_frequency_to_ghz, return_dtype=float)
.alias("system.cpu.frequency")
)
return df.cast(column_types)
def add_model_parameters(df: pl.DataFrame) -> pl.DataFrame:
"""Add number of parameters column based on model name."""
model_parameters = {
"llama2-70b": 70,
"llama-2-70b": 70,
"llama3_1-405b": 405,
"llama3_1-70b": 70,
"gptj": 6,
"mixtral-8x7b": 47,
"DeepSeek-R1-Distill-Llama-8B": 8,
"Llama-3.3-70B": 70,
"deepseek-v3": 671,
}
def extract_parameters(model_name: str) -> float | None:
if not model_name:
return None
for base_name, params in model_parameters.items():
if model_name.lower().startswith(base_name.lower()):
return float(params)
return None
return df.with_columns(
pl.col("model.name")
.map_elements(extract_parameters, return_dtype=float)
.alias("model.number_of_parameters")
)
def add_model_architecture(df: pl.DataFrame) -> pl.DataFrame:
"""Add model architecture classification."""
model_architectures = {
"llama": "LLM",
"gpt": "LLM",
"mixtral": "LLM",
"deepseek": "LLM",
"falcon": "LLM",
"mistral": "LLM",
}
def classify_architecture(model_name: str) -> str | None:
if not model_name:
return None
model_name_lower = model_name.lower()
for pattern, arch in model_architectures.items():
if pattern in model_name_lower:
return arch
return "Other"
return df.with_columns(
pl.col("model.name")
.map_elements(classify_architecture, return_dtype=str)
.alias("model.architecture")
)
def add_total_accelerator_count(df: pl.DataFrame) -> pl.DataFrame:
"""Compute total number of accelerators."""
return df.with_columns(
(
pl.col("system.number_of_nodes")
* pl.col("system.accelerator.count_per_node")
).alias("system.accelerator.total_count")
)
def add_normalized_performance(df: pl.DataFrame) -> pl.DataFrame:
"""Add performance per accelerator metric."""
return df.with_columns(
(pl.col("metrics.result") / pl.col("system.accelerator.total_count")).alias(
"metrics.result_per_accelerator"
)
)
def sort_columns_alphabetically(df: pl.DataFrame) -> pl.DataFrame:
"""Sort columns alphabetically."""
return df.select(sorted(df.columns))
def log_missing_values() -> None:
"""Log all collected missing values once."""
for category, values in MISSING_VALUES.items():
if values:
logger.warning(
f"Could not determine {len(values)} unique {category}: {sorted(str(v) for v in values)}"
)
def upload_to_huggingface_hub(
df: pl.DataFrame, dataset_name: str = "OpenMLPerf", private: bool = True
) -> None:
"""Upload the processed dataset to HuggingFace Hub."""
logger.info(f"Preparing dataset '{dataset_name}' for upload to HuggingFace Hub")
data_dict = {col: df[col].to_list() for col in df.columns}
dataset = Dataset.from_dict(data_dict)
try:
dataset.push_to_hub(dataset_name, private=private)
logger.info(
f"Successfully uploaded dataset to HuggingFace Hub as '{dataset_name}'"
)
except Exception as e:
logger.error(f"Failed to upload dataset to HuggingFace Hub: {e}")
def process_data(base_path: str = "semi-raw-mlperf-data") -> pl.DataFrame:
"""Main data processing pipeline."""
logger.info("Starting data processing pipeline")
MISSING_VALUES.clear()
df = (
load_raw_data(base_path)
.pipe(clean_string_values)
.pipe(normalize_memory_values)
.pipe(normalize_datetime_values)
.pipe(cast_columns)
.pipe(add_vendor_columns)
.pipe(normalize_interconnect_values)
.pipe(extract_framework_columns)
.pipe(add_model_parameters)
.pipe(add_model_architecture)
.pipe(add_total_accelerator_count)
.pipe(add_normalized_performance)
.pipe(sort_columns_alphabetically)
.pipe(filter_submissions)
)
log_missing_values()
logger.info(f"Processed {len(df)} records")
return df
def export_data(df: pl.DataFrame) -> None:
"""Export processed data to JSON file."""
with open("data.json", "w") as f:
json.dump(df.to_dicts(), f, indent=2)
logger.info("Exported data to data.json")
df.write_parquet("data.parquet")
logger.info("Exported data to data.parquet")
def main(
base_path: str = "semi-raw-mlperf-data",
upload_to_hub: bool = False,
dataset_name: str = "OpenMLPerf",
push_to_hub: bool = True,
private: bool = True,
):
"""Run the complete data processing pipeline."""
logging.basicConfig(level=logging.INFO)
df = process_data(base_path)
export_data(df)
if upload_to_hub:
upload_to_huggingface_hub(df, dataset_name, private)
return df
if __name__ == "__main__":
main(upload_to_hub=False, private=True)
|