Datasets:

Modalities:
Audio
Text
Formats:
parquet
Languages:
English
ArXiv:
Tags:
audio
Libraries:
Datasets
Dask
License:
File size: 4,536 Bytes
959cd4d
 
 
 
 
 
 
 
 
36b4d10
de245c4
 
 
 
 
 
 
 
 
 
 
 
959cd4d
c457ed6
 
de245c4
c457ed6
 
 
 
 
 
 
 
 
 
ee4ce2e
c457ed6
de1dacb
c457ed6
 
62d9a85
 
c457ed6
 
 
 
 
 
 
 
 
bf48210
c457ed6
 
 
 
 
 
 
 
 
 
 
 
 
bf48210
c457ed6
bf48210
c457ed6
 
 
 
 
 
bf6549c
c457ed6
 
 
 
 
 
 
 
 
 
 
 
5397e5c
c457ed6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4232953
c457ed6
 
 
 
 
 
 
 
 
 
 
 
 
 
de245c4
 
c457ed6
 
de245c4
 
 
 
 
 
 
 
c457ed6
de245c4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
---
tags:
- audio
license: apache-2.0
language:
- en
pretty_name: NonverbalTTS
size_categories:
- 1K<n<10K
configs:
- config_name: default
  data_files:
  - split: train
    path: default/train/**
  - split: dev
    path: default/dev/**
  - split: test
    path: default/test/**
  - split: other
    path: default/other/**
task_categories:
- text-to-speech
---
# NonverbalTTS Dataset πŸŽ΅πŸ—£οΈ

[![arxiv](https://img.shields.io/badge/arXiv-2507.13155-b31b1b.svg?style=plastic)](https://arxiv.org/abs/2507.13155)
[![Hugging Face](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Dataset-blue)](https://huggingface.co/datasets/deepvk/NonverbalTTS)

**NonverbalTTS** is a 17-hour open-access English speech corpus with aligned text annotations for **nonverbal vocalizations (NVs)** and **emotional categories**, designed to advance expressive text-to-speech (TTS) research.

## Key Features ✨

- **17 hours** of high-quality speech data
- **10 NV types**: Breathing, laughter, sighing, sneezing, coughing, throat clearing, groaning, grunting, snoring, sniffing
- **8 emotion categories**: Angry, disgusted, fearful, happy, neutral, sad, surprised, other
- **Diverse speakers**: 2296 speakers (60% male, 40% female)
- **Multi-source**: Derived from [VoxCeleb](https://www.robots.ox.ac.uk/~vgg/data/voxceleb/) and [Expresso](https://speechbot.github.io/expresso/) corpora
- **Rich metadata**: Emotion labels, NV annotations, speaker IDs, audio quality metrics
- **Sampling rate**: 16kHz for audio from VoxCeleb, 48kHz for audio from Expresso
<!-- ## Dataset Structure πŸ“‚



NonverbalTTS/
β”œβ”€β”€ wavs/ # Audio files (16-48kHz WAV format)
β”‚ β”œβ”€β”€ ex01_sad_00265.wav
β”‚ └── ...
β”œβ”€β”€ .gitattributes
β”œβ”€β”€ README.md
└── metadata.csv # Metadata annotations -->


<!-- ## Metadata Schema (`metadata.csv`) πŸ“‹

| Column | Description | Example |
|--------|-------------|---------|
| `index` | Unique sample ID | `ex01_sad_00265` |
| `file_name` | Audio file path | `wavs/ex01_sad_00265.wav` |
| `Emotion` | Emotion label | `sad` |
| `Initial text` | Raw transcription | `"So, Mom, 🌬️ how've you been?"` |
| `Annotator response {1,2,3}` | Refined transcriptions | `"So, Mom, how've you been?"` |
| `Result` | Final fused transcription | `"So, Mom, 🌬️ how've you been?"` |
| `dnsmos` | Audio quality score (1-5) | `3.936982` |
| `duration` | Audio length (seconds) | `3.6338125` |
| `speaker_id` | Speaker identifier | `ex01` |
| `data_name` | Source corpus | `Expresso` |
| `gender` | Speaker gender | `m` | -->

<!-- **NV Symbols**: 🌬️=Breath, πŸ˜‚=Laughter, etc. (See [Annotation Guidelines](https://zenodo.org/records/15274617)) -->

## Loading the Dataset πŸ’»

```python
from datasets import load_dataset

dataset = load_dataset("deepvk/NonverbalTTS")
```

<!-- # Access train split
```print(dataset["train"][0])```

# Output: {'index': 'ex01_sad_00265', 'file_name': 'wavs/ex01_sad_00265.wav', ...}
 -->
 
## Annotation Pipeline πŸ”§

1. **Automatic Detection**  
   - NV detection using [BEATs](https://arxiv.org/abs/2409.09546)  
   - Emotion classification with [emotion2vec+](https://huggingface.co/emotion2vec/emotion2vec_plus_large)  
   - ASR transcription via Canary model  

2. **Human Validation**  
   - 3 annotators per sample  
   - Filtered non-English/multi-speaker clips  
   - NV/emotion validation and refinement  

3. **Fusion Algorithm**  
   - Majority voting for final transcriptions  
   - Pyalign-based sequence alignment  
   - Multi-annotator hypothesis merging  


## Benchmark Results πŸ“Š


Fine-tuning CosyVoice-300M on NonverbalTTS achieves parity with state-of-the-art proprietary systems:
|Metric |	NVTTS |	CosyVoice2 |
|    ------- | ------- | -------   | 
|Speaker Similarity |	0.89 |	0.85 |
|NV Jaccard 	| 0.8 |	0.78 |
|Human Preference | 	33.4% |	35.4% |


## Use Cases πŸ’‘
- Training expressive TTS models
- Zero-shot NV synthesis
- Emotion-aware speech generation
- Prosody modeling research

## License πŸ“œ
- Annotations: CC BY-NC-SA 4.0
- Audio: Adheres to original source licenses (VoxCeleb, Expresso)


## Citation πŸ“


```
@misc{borisov2025nonverbalttspublicenglishcorpus,
      title={NonverbalTTS: A Public English Corpus of Text-Aligned Nonverbal Vocalizations with Emotion Annotations for Text-to-Speech}, 
      author={Maksim Borisov and Egor Spirin and Daria Diatlova},
      year={2025},
      eprint={2507.13155},
      archivePrefix={arXiv},
      primaryClass={cs.LG},
      url={https://arxiv.org/abs/2507.13155}, 
}
```