|
|
from openai import OpenAI |
|
|
import json |
|
|
|
|
|
import requests |
|
|
|
|
|
class BaseAgent: |
|
|
def __init__(self, system_prompt="", use_history=True, temp=0.5, top_p=0.95): |
|
|
self.use_history = use_history |
|
|
self.client = OpenAI() |
|
|
self.system = system_prompt |
|
|
self.temp = temp |
|
|
self.top_p = top_p |
|
|
self.input_tokens_count = 0 |
|
|
self.output_tokens_count = 0 |
|
|
self.messages = [] |
|
|
if self.system: |
|
|
self.messages.append({"role": "system", "content": system_prompt}) |
|
|
|
|
|
|
|
|
def __call__(self, message, parse=False): |
|
|
self.messages.append({"role": "user", "content": message}) |
|
|
result = self.generate(message, parse) |
|
|
self.messages.append({"role": "assistant", "content": result}) |
|
|
|
|
|
if parse: |
|
|
try: |
|
|
result = self.parse_json(result) |
|
|
except: |
|
|
raise Exception("Error content is list below:\n", result) |
|
|
|
|
|
return result |
|
|
|
|
|
|
|
|
|
|
|
def generate(self, message, json_format): |
|
|
if self.use_history: |
|
|
input_messages = self.messages |
|
|
else: |
|
|
input_messages = [ |
|
|
{"role": "system", "content": self.system}, |
|
|
{"role": "user", "content": message} |
|
|
] |
|
|
|
|
|
|
|
|
if json_format: |
|
|
response = self.client.chat.completions.create( |
|
|
model="gpt-4o-2024-08-06", |
|
|
messages=input_messages, |
|
|
temperature=self.temp, |
|
|
top_p=self.top_p, |
|
|
response_format = { "type": "json_object" } |
|
|
) |
|
|
else: |
|
|
response = self.client.chat.completions.create( |
|
|
model="gpt-4o-2024-08-06", |
|
|
messages=input_messages, |
|
|
temperature=self.temp, |
|
|
top_p=self.top_p, |
|
|
) |
|
|
self.update_tokens_count(response) |
|
|
return response.choices[0].message.content |
|
|
|
|
|
|
|
|
def parse_json(self, response): |
|
|
return json.loads(response) |
|
|
|
|
|
|
|
|
def add(self, message: dict): |
|
|
self.messages.append(message) |
|
|
|
|
|
|
|
|
def update_tokens_count(self, response): |
|
|
self.input_tokens_count += response.usage.prompt_tokens |
|
|
self.output_tokens_count += response.usage.completion_tokens |
|
|
|
|
|
|
|
|
def show_usage(self): |
|
|
print(f"Total input tokens used: {self.input_tokens_count}\nTotal output tokens used: {self.output_tokens_count}") |
|
|
|
|
|
|
|
|
class BaseAgent_SFT: |
|
|
def __init__(self, system_prompt="", use_history=True, temp=0, top_p=1, model_name_or_path="http://0.0.0.0:12333/v1/chat/completions"): |
|
|
self.use_history = use_history |
|
|
if not model_name_or_path.startswith("http"): |
|
|
self.client = LLM(model=model_name_or_path, tokenizer=model_name_or_path, gpu_memory_utilization=0.5, tensor_parallel_size=1) |
|
|
self.api = False |
|
|
else: |
|
|
self.client = model_name_or_path |
|
|
self.model_name = "eval-agent" |
|
|
self.api = True |
|
|
self.system = system_prompt |
|
|
self.temp = temp |
|
|
self.top_p = top_p |
|
|
self.input_tokens_count = 0 |
|
|
self.output_tokens_count = 0 |
|
|
self.messages = [] |
|
|
if self.system: |
|
|
self.messages.append({"role": "system", "content": system_prompt}) |
|
|
|
|
|
|
|
|
def __call__(self, message): |
|
|
self.messages.append({"role": "user", "content": message}) |
|
|
result = self.generate(message) |
|
|
self.messages.append({"role": "assistant", "content": result}) |
|
|
|
|
|
return result |
|
|
|
|
|
|
|
|
def generate(self, message): |
|
|
if self.use_history: |
|
|
input_messages = self.messages |
|
|
else: |
|
|
input_messages = [ |
|
|
{"role": "system", "content": self.system}, |
|
|
{"role": "user", "content": message} |
|
|
] |
|
|
|
|
|
if self.api: |
|
|
payload = { |
|
|
"model": self.model_name, |
|
|
"messages": input_messages, |
|
|
"max_tokens": 1024, |
|
|
"temperature": self.temp, |
|
|
"top_p": self.top_p, |
|
|
"stream": False |
|
|
} |
|
|
|
|
|
for _ in range(3): |
|
|
try: |
|
|
response = requests.post(self.client, json=payload, timeout=120) |
|
|
response.raise_for_status() |
|
|
result = response.json() |
|
|
return result["choices"][0]["message"]["content"] |
|
|
|
|
|
except requests.exceptions.RequestException as e: |
|
|
print(f"❌ API request failed: {e}") |
|
|
continue |
|
|
|
|
|
except (KeyError, IndexError) as e: |
|
|
print(f"❌ Unexpected response format: {e}") |
|
|
continue |
|
|
return None |
|
|
else: |
|
|
response = self.client.generate( |
|
|
input_messages, |
|
|
sampling_params=SamplingParams( |
|
|
max_tokens=1024, |
|
|
temperature=self.temp, |
|
|
top_p=self.top_p, |
|
|
n=1, |
|
|
), |
|
|
) |
|
|
return response[0].outputs[0].text |
|
|
|
|
|
class BaseAgent_Open: |
|
|
def __init__(self, system_prompt="", use_history=True, temp=0, top_p=1, model_name_or_path="Qwen/Qwen2.5-3B-Instruct"): |
|
|
self.use_history = use_history |
|
|
self.client = LLM(model=model_name_or_path, tokenizer=model_name_or_path, gpu_memory_utilization=0.5, tensor_parallel_size=1) |
|
|
self.tokenizer = self.client.get_tokenizer() |
|
|
self.system = system_prompt |
|
|
self.temp = temp |
|
|
self.top_p = top_p |
|
|
self.messages = [] |
|
|
if self.system: |
|
|
self.messages.append({"role": "system", "content": system_prompt}) |
|
|
|
|
|
|
|
|
def __call__(self, message): |
|
|
self.messages.append({"role": "user", "content": message}) |
|
|
result = self.generate(message) |
|
|
self.messages.append({"role": "assistant", "content": result}) |
|
|
|
|
|
return result |
|
|
|
|
|
|
|
|
def generate(self, message): |
|
|
if self.use_history: |
|
|
input_messages = self.messages |
|
|
else: |
|
|
input_messages = [ |
|
|
{"role": "system", "content": self.system}, |
|
|
{"role": "user", "content": message} |
|
|
] |
|
|
|
|
|
|
|
|
prompt = self.tokenizer.apply_chat_template( |
|
|
input_messages, |
|
|
tokenize=False, |
|
|
add_generation_prompt=True |
|
|
) |
|
|
|
|
|
response = self.client.generate( |
|
|
prompt, |
|
|
sampling_params=SamplingParams( |
|
|
max_tokens=1024, |
|
|
temperature=self.temp, |
|
|
top_p=self.top_p, |
|
|
n=1, |
|
|
), |
|
|
) |
|
|
return response[0].outputs[0].text |
|
|
|
|
|
|