import re import json import os def parse_json(json_str): try: return json.loads(json_str) except Exception as e1: # First attempt: Try to extract JSON from markdown code block json_match = re.search(r'```json\n(.*?)\n```', json_str, re.DOTALL) if json_match: json_str = json_match.group(1) try: return json.loads(json_str) except: pass # Second attempt: Remove only problematic control characters but keep valid JSON structure # Don't escape newlines/tabs that are part of JSON formatting # Only remove control chars that shouldn't be in JSON (0x00-0x08, 0x0B, 0x0C, 0x0E-0x1F) cleaned_str = re.sub(r'[\x00-\x08\x0B\x0C\x0E-\x1F\x7F]', '', json_str) try: data = json.loads(cleaned_str) return data except Exception as e2: # If still failing, print debug info print(f"DEBUG: Failed to parse JSON. Original error: {e1}") print(f"DEBUG: After cleanup error: {e2}") print(f"DEBUG: Original JSON string (first 500 chars): {repr(json_str[:500])}") print(f"DEBUG: Cleaned JSON string (first 500 chars): {repr(cleaned_str[:500])}") raise e2 def most_similar_string(prompt, string_list) -> dict: similarities = [Levenshtein.distance(prompt, item["Prompt"]) for item in string_list] most_similar_idx = similarities.index(min(similarities)) return string_list[most_similar_idx] def check_and_fix_prompt(chosed_prompts, prompt_list) -> dict: results_dict={} for key, item in chosed_prompts.items(): thought = item["Thought"] sim_item = most_similar_string(item["Prompt"], prompt_list) sim_item["Thought"] = thought results_dict[key] = sim_item return results_dict def format_dimension_as_string(df, dimension_name) -> str: df["Dimension"] = df["Dimension"].str.lower().replace(" ", "_") # the lookup key format is subject_consistency row = df.loc[df['Dimension'] == dimension_name] if row.empty: return f"No data found for dimension: {dimension_name}" formatted_string = ( f"{row['Dimension'].values[0]}: " f"Very High -> {row['Very High'].values[0]}, " f"High -> {row['High'].values[0]}, " f"Moderate -> {row['Moderate'].values[0]}, " f"Low -> {row['Low'].values[0]}, " f"Very Low -> {row['Very Low'].values[0]}" ) return formatted_string def extract_between_tags(text, tag) -> str: pattern = f'<{tag}>(.*?)' match = re.search(pattern, text, re.DOTALL) return match.group(1) if match else None def format_plans(plans_str) -> dict: ''' "The user's query is about the model's ability to generate multiple objects in a single scene. To begin evaluating this capability, I will start with a basic scenario involving two distinct objects. This will help establish whether the model can handle simple multi-object scenes before exploring more complex scenarios. Now I will analyze the Basic generation of two distinct objects in a simple scene sub-aspect dimension.Multiple Objects" ''' plan = {} if '' in plans_str: thought_content, summary_content = extract_between_tags(plans_str, "think"), extract_between_tags(plans_str, "summary") plan["thought"], plan["summary"] = thought_content, summary_content else: think_content, tool_content = extract_between_tags(plans_str, "think"), extract_between_tags(plans_str, "tool") plan["thought"], plan["tool"] = think_content, tool_content return plan def save_json(content, file_path): with open(file_path, 'w') as json_file: json.dump(content, json_file, indent=4) print(f"Results are saved to {os.path.abspath(file_path)}") def tool_existence(tool_name): tool_list = ["subject consistency", "background consistency", "motion smoothness", "aesthetic quality", "imaging quality", "appearance style", "temporal style", "overall consistency", "multiple objects", "object class", "dynamic degree", "human action", "color", "spatial relationship", "scene"] # tool name could be in the format of "Subject Consistency" or "subject consistency" or "subjtect_consistency" or "advanced_subject_consistency" tool_name = tool_name.lower().replace("_", " ") for tool in tool_list: if tool in tool_name: return tool.replace(" ", "_") return None def compute_score(pred, gt): score = 0. answer = parse_answer(pred) if answer is None: return score pattern = r"\s*([A-Z])\s*" match = re.search(pattern, answer, re.DOTALL) try: answer = match.group(1) if answer.strip().lower() == gt.strip().lower(): score = 1. except: pass return score