Datasets:
Commit
·
88bda97
1
Parent(s):
41b694a
Add HateBR task
Browse files- portuguese_benchmark.py +176 -74
portuguese_benchmark.py
CHANGED
|
@@ -1,8 +1,10 @@
|
|
| 1 |
-
import textwrap
|
| 2 |
import datasets
|
| 3 |
from typing import Dict, List, Optional, Union
|
|
|
|
|
|
|
| 4 |
|
| 5 |
import xml.etree.ElementTree as ET
|
|
|
|
| 6 |
|
| 7 |
logger = datasets.logging.get_logger(__name__)
|
| 8 |
|
|
@@ -25,7 +27,7 @@ _LENERBR_KWARGS = dict(
|
|
| 25 |
label_classes=["ORGANIZACAO", "PESSOA", "TEMPO", "LOCAL", "LEGISLACAO", "JURISPRUDENCIA"],
|
| 26 |
data_urls={
|
| 27 |
"train": "https://raw.githubusercontent.com/peluz/lener-br/master/leNER-Br/train/train.conll",
|
| 28 |
-
"
|
| 29 |
"test": "https://raw.githubusercontent.com/peluz/lener-br/master/leNER-Br/test/test.conll",
|
| 30 |
},
|
| 31 |
citation=textwrap.dedent(
|
|
@@ -64,7 +66,7 @@ _ASSIN2_BASE_KWARGS = dict(
|
|
| 64 |
),
|
| 65 |
data_urls={
|
| 66 |
"train": "https://github.com/ruanchaves/assin/raw/master/sources/assin2-train-only.xml",
|
| 67 |
-
"
|
| 68 |
"test": "https://github.com/ruanchaves/assin/raw/master/sources/assin2-test.xml",
|
| 69 |
},
|
| 70 |
citation=textwrap.dedent(
|
|
@@ -92,18 +94,57 @@ _ASSIN2_STS_KWARGS = dict(
|
|
| 92 |
**_ASSIN2_BASE_KWARGS
|
| 93 |
)
|
| 94 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
|
| 96 |
class PTBenchmarkConfig(datasets.BuilderConfig):
|
| 97 |
"""BuilderConfig for PTBenchmark."""
|
| 98 |
|
| 99 |
def __init__(
|
| 100 |
self,
|
| 101 |
-
task_type,
|
| 102 |
-
data_urls,
|
| 103 |
-
citation,
|
| 104 |
-
url,
|
| 105 |
-
label_classes=None,
|
| 106 |
-
|
|
|
|
|
|
|
| 107 |
**kwargs,
|
| 108 |
):
|
| 109 |
"""BuilderConfig for GLUE.
|
|
@@ -130,57 +171,74 @@ class PTBenchmarkConfig(datasets.BuilderConfig):
|
|
| 130 |
self.data_urls = data_urls
|
| 131 |
self.citation = citation
|
| 132 |
self.url = url
|
| 133 |
-
self.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 134 |
|
| 135 |
-
def
|
| 136 |
bio_labels = ["O"]
|
| 137 |
for label_name in config.label_classes:
|
| 138 |
bio_labels.append("B-" + label_name)
|
| 139 |
bio_labels.append("I-" + label_name)
|
| 140 |
-
return datasets.
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
datasets.features.ClassLabel(names=bio_labels)
|
| 150 |
-
),
|
| 151 |
-
}
|
| 152 |
-
)
|
| 153 |
-
)
|
| 154 |
|
| 155 |
-
def
|
| 156 |
-
return datasets.
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
"sentence2": datasets.Value("string"),
|
| 165 |
-
"label": datasets.features.ClassLabel(names=config.label_classes),
|
| 166 |
-
}
|
| 167 |
-
)
|
| 168 |
-
)
|
| 169 |
|
| 170 |
-
def
|
| 171 |
-
return datasets.
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 184 |
|
| 185 |
def _conll_ner_generator(file_path):
|
| 186 |
with open(file_path, encoding="utf-8") as f:
|
|
@@ -247,40 +305,84 @@ class PTBenchmark(datasets.GeneratorBasedBuilder):
|
|
| 247 |
),
|
| 248 |
PTBenchmarkConfig(
|
| 249 |
**_ASSIN2_STS_KWARGS
|
|
|
|
|
|
|
|
|
|
| 250 |
)
|
| 251 |
]
|
| 252 |
|
| 253 |
def _info(self) -> datasets.DatasetInfo:
|
| 254 |
-
|
| 255 |
-
|
|
|
|
|
|
|
|
|
|
| 256 |
elif self.config.task_type == "rte":
|
| 257 |
-
|
| 258 |
elif self.config.task_type == "sts":
|
| 259 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 260 |
|
| 261 |
def _split_generators(self, dl_manager: datasets.DownloadManager):
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 277 |
|
| 278 |
def _generate_examples(
|
| 279 |
self,
|
| 280 |
-
file_path: Optional[str] = None
|
|
|
|
|
|
|
| 281 |
):
|
| 282 |
logger.info("⏳ Generating examples from = %s", file_path)
|
| 283 |
-
if self.config.task_type == "
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 284 |
yield from _conll_ner_generator(file_path)
|
| 285 |
elif self.config.task_type == "rte":
|
| 286 |
if "assin2" in self.config.name:
|
|
|
|
|
|
|
| 1 |
import datasets
|
| 2 |
from typing import Dict, List, Optional, Union
|
| 3 |
+
import json
|
| 4 |
+
import textwrap
|
| 5 |
|
| 6 |
import xml.etree.ElementTree as ET
|
| 7 |
+
import pandas as pd
|
| 8 |
|
| 9 |
logger = datasets.logging.get_logger(__name__)
|
| 10 |
|
|
|
|
| 27 |
label_classes=["ORGANIZACAO", "PESSOA", "TEMPO", "LOCAL", "LEGISLACAO", "JURISPRUDENCIA"],
|
| 28 |
data_urls={
|
| 29 |
"train": "https://raw.githubusercontent.com/peluz/lener-br/master/leNER-Br/train/train.conll",
|
| 30 |
+
"validation": "https://raw.githubusercontent.com/peluz/lener-br/master/leNER-Br/dev/dev.conll",
|
| 31 |
"test": "https://raw.githubusercontent.com/peluz/lener-br/master/leNER-Br/test/test.conll",
|
| 32 |
},
|
| 33 |
citation=textwrap.dedent(
|
|
|
|
| 66 |
),
|
| 67 |
data_urls={
|
| 68 |
"train": "https://github.com/ruanchaves/assin/raw/master/sources/assin2-train-only.xml",
|
| 69 |
+
"validation": "https://github.com/ruanchaves/assin/raw/master/sources/assin2-dev.xml",
|
| 70 |
"test": "https://github.com/ruanchaves/assin/raw/master/sources/assin2-test.xml",
|
| 71 |
},
|
| 72 |
citation=textwrap.dedent(
|
|
|
|
| 94 |
**_ASSIN2_BASE_KWARGS
|
| 95 |
)
|
| 96 |
|
| 97 |
+
# Extracted from:
|
| 98 |
+
# - https://huggingface.co/datasets/ruanchaves/hatebr
|
| 99 |
+
# - https://github.com/franciellevargas/HateBR
|
| 100 |
+
_HATEBR_KWARGS = dict(
|
| 101 |
+
name = "HateBR",
|
| 102 |
+
description=textwrap.dedent(
|
| 103 |
+
"""\
|
| 104 |
+
HateBR is the first large-scale expert annotated dataset of Brazilian Instagram comments for abusive language detection
|
| 105 |
+
on the web and social media. The HateBR was collected from Brazilian Instagram comments of politicians and manually annotated
|
| 106 |
+
by specialists. It is composed of 7,000 documents annotated according to three different layers: a binary classification (offensive
|
| 107 |
+
versus non-offensive comments), offensiveness-level (highly, moderately, and slightly offensive messages), and nine hate speech
|
| 108 |
+
groups (xenophobia, racism, homophobia, sexism, religious intolerance, partyism, apology for the dictatorship, antisemitism,
|
| 109 |
+
and fatphobia). Each comment was annotated by three different annotators and achieved high inter-annotator agreement. Furthermore,
|
| 110 |
+
baseline experiments were implemented reaching 85% of F1-score outperforming the current literature dataset baselines for
|
| 111 |
+
the Portuguese language. We hope that the proposed expert annotated dataset may foster research on hate speech detection in the
|
| 112 |
+
Natural Language Processing area."""
|
| 113 |
+
),
|
| 114 |
+
task_type="classification",
|
| 115 |
+
file_type="csv",
|
| 116 |
+
label_classes=[0, 1, 2, 3],
|
| 117 |
+
data_urls={
|
| 118 |
+
"train": "https://raw.githubusercontent.com/franciellevargas/HateBR/2d18c5b9410c2dfdd6d5394caa54d608857dae7c/dataset/HateBR.csv"
|
| 119 |
+
},
|
| 120 |
+
citation=textwrap.dedent(
|
| 121 |
+
"""\
|
| 122 |
+
@inproceedings{vargas2022hatebr,
|
| 123 |
+
title={HateBR: A Large Expert Annotated Corpus of Brazilian Instagram Comments for Offensive Language and Hate Speech Detection},
|
| 124 |
+
author={Vargas, Francielle and Carvalho, Isabelle and de G{\'o}es, Fabiana Rodrigues and Pardo, Thiago and Benevenuto, Fabr{\'\i}cio},
|
| 125 |
+
booktitle={Proceedings of the Thirteenth Language Resources and Evaluation Conference},
|
| 126 |
+
pages={7174--7183},
|
| 127 |
+
year={2022}
|
| 128 |
+
}"""
|
| 129 |
+
),
|
| 130 |
+
url="https://github.com/franciellevargas/HateBR",
|
| 131 |
+
text_and_label_columns=["instagram_comments", "offensiveness_levels"],
|
| 132 |
+
indexes_url="https://huggingface.co/datasets/ruanchaves/hatebr/raw/main/indexes.json"
|
| 133 |
+
)
|
| 134 |
|
| 135 |
class PTBenchmarkConfig(datasets.BuilderConfig):
|
| 136 |
"""BuilderConfig for PTBenchmark."""
|
| 137 |
|
| 138 |
def __init__(
|
| 139 |
self,
|
| 140 |
+
task_type: str,
|
| 141 |
+
data_urls: Dict[str, str],
|
| 142 |
+
citation: str,
|
| 143 |
+
url: str,
|
| 144 |
+
label_classes: Optional[List[Union[str, int]]] = None,
|
| 145 |
+
file_type: Optional[str] = None, #filetype (csv, tsc, jsonl)
|
| 146 |
+
text_and_label_columns: Optional[List[str]] = None, #columns for train, dev and test for csv datasets
|
| 147 |
+
indexes_url=None, #indexes for train, dev and test for single file datasets
|
| 148 |
**kwargs,
|
| 149 |
):
|
| 150 |
"""BuilderConfig for GLUE.
|
|
|
|
| 171 |
self.data_urls = data_urls
|
| 172 |
self.citation = citation
|
| 173 |
self.url = url
|
| 174 |
+
self.file_type = file_type
|
| 175 |
+
self.text_and_label_columns = text_and_label_columns
|
| 176 |
+
self.indexes_url = indexes_url
|
| 177 |
+
|
| 178 |
+
def _get_classification_features(config):
|
| 179 |
+
return datasets.Features(
|
| 180 |
+
{
|
| 181 |
+
"idx": datasets.Value("int32"),
|
| 182 |
+
"sentence": datasets.Value("string"),
|
| 183 |
+
"label": datasets.features.ClassLabel(names=config.label_classes),
|
| 184 |
+
}
|
| 185 |
+
)
|
| 186 |
|
| 187 |
+
def _get_ner_features(config):
|
| 188 |
bio_labels = ["O"]
|
| 189 |
for label_name in config.label_classes:
|
| 190 |
bio_labels.append("B-" + label_name)
|
| 191 |
bio_labels.append("I-" + label_name)
|
| 192 |
+
return datasets.Features(
|
| 193 |
+
{
|
| 194 |
+
"idx": datasets.Value("int32"),
|
| 195 |
+
"tokens": datasets.Sequence(datasets.Value("string")),
|
| 196 |
+
"ner_tags": datasets.Sequence(
|
| 197 |
+
datasets.features.ClassLabel(names=bio_labels)
|
| 198 |
+
),
|
| 199 |
+
}
|
| 200 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 201 |
|
| 202 |
+
def _get_rte_features(config):
|
| 203 |
+
return datasets.Features(
|
| 204 |
+
{
|
| 205 |
+
"idx": datasets.Value("int32"),
|
| 206 |
+
"sentence1": datasets.Value("string"),
|
| 207 |
+
"sentence2": datasets.Value("string"),
|
| 208 |
+
"label": datasets.features.ClassLabel(names=config.label_classes),
|
| 209 |
+
}
|
| 210 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 211 |
|
| 212 |
+
def _get_sts_features(config):
|
| 213 |
+
return datasets.Features(
|
| 214 |
+
{
|
| 215 |
+
"idx": datasets.Value("int32"),
|
| 216 |
+
"sentence1": datasets.Value("string"),
|
| 217 |
+
"sentence2": datasets.Value("string"),
|
| 218 |
+
"label": datasets.Value("float32"),
|
| 219 |
+
}
|
| 220 |
+
)
|
| 221 |
+
|
| 222 |
+
def _csv_generator(file_path: str,
|
| 223 |
+
columns: List[str],
|
| 224 |
+
indexes_path: Optional[str] = None,
|
| 225 |
+
split: Optional[str] = None):
|
| 226 |
+
"""Yields examples."""
|
| 227 |
+
df = pd.read_csv(file_path)
|
| 228 |
+
df = df[columns]
|
| 229 |
+
|
| 230 |
+
with open(indexes_path, "r") as f:
|
| 231 |
+
indexes= json.load(f)
|
| 232 |
+
split_indexes = indexes[split]
|
| 233 |
+
df_split = df.iloc[split_indexes]
|
| 234 |
+
|
| 235 |
+
for id_, row in df_split.iterrows():
|
| 236 |
+
example = {
|
| 237 |
+
"idx": id_,
|
| 238 |
+
"sentence": str(row[columns[0]]),
|
| 239 |
+
"label": int(row[columns[-1]])
|
| 240 |
+
}
|
| 241 |
+
yield id_, example
|
| 242 |
|
| 243 |
def _conll_ner_generator(file_path):
|
| 244 |
with open(file_path, encoding="utf-8") as f:
|
|
|
|
| 305 |
),
|
| 306 |
PTBenchmarkConfig(
|
| 307 |
**_ASSIN2_STS_KWARGS
|
| 308 |
+
),
|
| 309 |
+
PTBenchmarkConfig(
|
| 310 |
+
**_HATEBR_KWARGS
|
| 311 |
)
|
| 312 |
]
|
| 313 |
|
| 314 |
def _info(self) -> datasets.DatasetInfo:
|
| 315 |
+
features = None
|
| 316 |
+
if self.config.task_type == "classification":
|
| 317 |
+
features = _get_classification_features(self.config)
|
| 318 |
+
elif self.config.task_type == "ner":
|
| 319 |
+
features = _get_ner_features(self.config)
|
| 320 |
elif self.config.task_type == "rte":
|
| 321 |
+
features = _get_rte_features(self.config)
|
| 322 |
elif self.config.task_type == "sts":
|
| 323 |
+
features = _get_sts_features(self.config)
|
| 324 |
+
|
| 325 |
+
return datasets.DatasetInfo(
|
| 326 |
+
description=self.config.description,
|
| 327 |
+
homepage=self.config.url,
|
| 328 |
+
citation=self.config.citation,
|
| 329 |
+
supervised_keys=None,
|
| 330 |
+
features=features
|
| 331 |
+
)
|
| 332 |
|
| 333 |
def _split_generators(self, dl_manager: datasets.DownloadManager):
|
| 334 |
+
data_urls = self.config.data_urls.copy()
|
| 335 |
+
if self.config.indexes_url is not None:
|
| 336 |
+
data_urls['indexes'] = self.config.indexes_url
|
| 337 |
+
file_paths = dl_manager.download_and_extract(data_urls)
|
| 338 |
+
|
| 339 |
+
if self.config.indexes_url is None:
|
| 340 |
+
return [
|
| 341 |
+
datasets.SplitGenerator(
|
| 342 |
+
name=datasets.Split.TRAIN,
|
| 343 |
+
gen_kwargs={"file_path": file_paths["train"]},
|
| 344 |
+
),
|
| 345 |
+
datasets.SplitGenerator(
|
| 346 |
+
name=datasets.Split.VALIDATION,
|
| 347 |
+
gen_kwargs={"file_path": file_paths["validation"]},
|
| 348 |
+
),
|
| 349 |
+
datasets.SplitGenerator(
|
| 350 |
+
name=datasets.Split.TEST,
|
| 351 |
+
gen_kwargs={"file_path": file_paths["test"]},
|
| 352 |
+
)
|
| 353 |
+
]
|
| 354 |
+
else:
|
| 355 |
+
return [
|
| 356 |
+
datasets.SplitGenerator(
|
| 357 |
+
name=datasets.Split.TRAIN,
|
| 358 |
+
gen_kwargs={"file_path": file_paths["train"], "indexes_path": file_paths["indexes"], "split": "train"},
|
| 359 |
+
),
|
| 360 |
+
datasets.SplitGenerator(
|
| 361 |
+
name=datasets.Split.VALIDATION,
|
| 362 |
+
gen_kwargs={"file_path": file_paths["train"], "indexes_path": file_paths["indexes"], "split": "validation"},
|
| 363 |
+
),
|
| 364 |
+
datasets.SplitGenerator(
|
| 365 |
+
name=datasets.Split.TEST,
|
| 366 |
+
gen_kwargs={"file_path": file_paths["train"], "indexes_path": file_paths["indexes"], "split": "test"},
|
| 367 |
+
)
|
| 368 |
+
]
|
| 369 |
|
| 370 |
def _generate_examples(
|
| 371 |
self,
|
| 372 |
+
file_path: Optional[str] = None,
|
| 373 |
+
indexes_path: Optional[str] = None,
|
| 374 |
+
split: Optional[str] = None
|
| 375 |
):
|
| 376 |
logger.info("⏳ Generating examples from = %s", file_path)
|
| 377 |
+
if self.config.task_type == "classification":
|
| 378 |
+
if self.config.file_type == "csv":
|
| 379 |
+
yield from _csv_generator(
|
| 380 |
+
file_path,
|
| 381 |
+
self.config.text_and_label_columns,
|
| 382 |
+
indexes_path=indexes_path,
|
| 383 |
+
split=split
|
| 384 |
+
)
|
| 385 |
+
elif self.config.task_type == "ner":
|
| 386 |
yield from _conll_ner_generator(file_path)
|
| 387 |
elif self.config.task_type == "rte":
|
| 388 |
if "assin2" in self.config.name:
|