Datasets:
Tasks:
Token Classification
Sub-tasks:
named-entity-recognition
Languages:
Chinese
Size:
1K<n<10K
License:
| # coding=utf-8 | |
| # Copyright 2020 HuggingFace Datasets Authors. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # Lint as: python3 | |
| import datasets | |
| _DESCRIPTION = """\ | |
| Tags: PER(人名), LOC(地点名), GPE(行政区名), ORG(机构名) | |
| Label Tag Meaning | |
| PER PER.NAM 名字(张三) | |
| PER.NOM 代称、类别名(穷人) | |
| LOC LOC.NAM 特指名称(紫玉山庄) | |
| LOC.NOM 泛称(大峡谷、宾馆) | |
| GPE GPE.NAM 行政区的名称(北京) | |
| ORG ORG.NAM 特定机构名称(通惠医院) | |
| ORG.NOM 泛指名称、统称(文艺公司) | |
| """ | |
| _HOMEPAGE_URL = "https://github.com/OYE93/Chinese-NLP-Corpus/tree/master/NER/Weibo" | |
| _CITATION = None | |
| _TRAIN_URL = "https://raw.githubusercontent.com/OYE93/Chinese-NLP-Corpus/master/NER/Weibo/weiboNER_2nd_conll.train" | |
| _TEST_URL = "https://raw.githubusercontent.com/OYE93/Chinese-NLP-Corpus/master/NER/Weibo/weiboNER_2nd_conll.test" | |
| _VALID_URL = "https://raw.githubusercontent.com/OYE93/Chinese-NLP-Corpus/master/NER/Weibo/weiboNER_2nd_conll.dev" | |
| class WeiboNERCorpus(datasets.GeneratorBasedBuilder): | |
| VERSION = datasets.Version("1.0.0") | |
| def _info(self): | |
| return datasets.DatasetInfo( | |
| description=_DESCRIPTION, | |
| features=datasets.Features( | |
| { | |
| "id": datasets.Value("string"), | |
| "tokens": datasets.Sequence(datasets.Value("string")), | |
| "ner_tags": datasets.Sequence( | |
| datasets.features.ClassLabel( | |
| names=[ | |
| "B-GPE.NAM", | |
| "B-GPE.NOM", | |
| "B-LOC.NAM", | |
| "B-LOC.NOM", | |
| "B-ORG.NAM", | |
| "B-ORG.NOM", | |
| "B-PER.NAM", | |
| "B-PER.NOM", | |
| "I-GPE.NAM", | |
| "I-GPE.NOM", | |
| "I-LOC.NAM", | |
| "I-LOC.NOM", | |
| "I-ORG.NAM", | |
| "I-ORG.NOM", | |
| "I-PER.NAM", | |
| "I-PER.NOM", | |
| "O", | |
| ] | |
| ) | |
| ), | |
| }, | |
| ), | |
| supervised_keys=None, | |
| homepage=_HOMEPAGE_URL, | |
| citation=_CITATION, | |
| ) | |
| def _split_generators(self, dl_manager): | |
| train_path = dl_manager.download_and_extract(_TRAIN_URL) | |
| valid_path = dl_manager.download_and_extract(_VALID_URL) | |
| test_path = dl_manager.download_and_extract(_TEST_URL) | |
| return [ | |
| datasets.SplitGenerator( | |
| name=datasets.Split.TRAIN, | |
| gen_kwargs={"data_path": train_path}, | |
| ), | |
| datasets.SplitGenerator( | |
| name=datasets.Split.VALIDATION, | |
| gen_kwargs={"data_path": valid_path}, | |
| ), | |
| datasets.SplitGenerator( | |
| name=datasets.Split.TEST, | |
| gen_kwargs={"data_path": test_path}, | |
| ), | |
| ] | |
| def _generate_examples(self, data_path): | |
| sentence_counter = 0 | |
| with open(data_path, encoding="utf-8") as f: | |
| current_words = [] | |
| current_labels = [] | |
| for row in f: | |
| row = row.rstrip() | |
| row_split = row.split("\t") | |
| if len(row_split) == 2: | |
| token, label = row_split | |
| current_words.append(token) | |
| current_labels.append(label) | |
| else: | |
| if not current_words: | |
| continue | |
| assert len(current_words) == len(current_labels), "word len doesnt match label length" | |
| sentence = ( | |
| sentence_counter, | |
| { | |
| "id": str(sentence_counter), | |
| "tokens": current_words, | |
| "ner_tags": current_labels, | |
| }, | |
| ) | |
| sentence_counter += 1 | |
| current_words = [] | |
| current_labels = [] | |
| yield sentence | |
| # if something remains: | |
| if current_words: | |
| sentence = ( | |
| sentence_counter, | |
| { | |
| "id": str(sentence_counter), | |
| "tokens": current_words, | |
| "ner_tags": current_labels, | |
| }, | |
| ) | |
| yield sentence | |