File size: 11,393 Bytes
ef9c1a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
"""Mobjects representing function graphs."""

from __future__ import annotations

__all__ = ["ParametricFunction", "FunctionGraph", "ImplicitFunction"]


from collections.abc import Callable, Iterable, Sequence
from typing import TYPE_CHECKING

import numpy as np
from isosurfaces import plot_isoline

from manim import config
from manim.mobject.graphing.scale import LinearBase, _ScaleBase
from manim.mobject.opengl.opengl_compatibility import ConvertToOpenGL
from manim.mobject.types.vectorized_mobject import VMobject

if TYPE_CHECKING:
    from typing import Any

    from typing_extensions import Self

    from manim.typing import Point3D, Point3DLike
    from manim.utils.color import ParsableManimColor

from manim.utils.color import YELLOW


class ParametricFunction(VMobject, metaclass=ConvertToOpenGL):
    """A parametric curve.

    Parameters
    ----------
    function
        The function to be plotted in the form of ``(lambda t: (x(t), y(t), z(t)))``
    t_range
        Determines the length that the function spans in the form of (t_min, t_max, step=0.01). By default ``[0, 1]``
    scaling
        Scaling class applied to the points of the function. Default of :class:`~.LinearBase`.
    use_smoothing
        Whether to interpolate between the points of the function after they have been created.
        (Will have odd behaviour with a low number of points)
    use_vectorized
        Whether to pass in the generated t value array to the function as ``[t_0, t_1, ...]``.
        Only use this if your function supports it. Output should be a numpy array
        of shape ``[[x_0, x_1, ...], [y_0, y_1, ...], [z_0, z_1, ...]]`` but ``z`` can
        also be 0 if the Axes is 2D
    discontinuities
        Values of t at which the function experiences discontinuity.
    dt
        The left and right tolerance for the discontinuities.


    Examples
    --------
    .. manim:: PlotParametricFunction
        :save_last_frame:

        class PlotParametricFunction(Scene):
            def func(self, t):
                return (np.sin(2 * t), np.sin(3 * t), 0)

            def construct(self):
                func = ParametricFunction(self.func, t_range = (0, TAU), fill_opacity=0).set_color(RED)
                self.add(func.scale(3))

    .. manim:: ThreeDParametricSpring
        :save_last_frame:

        class ThreeDParametricSpring(ThreeDScene):
            def construct(self):
                curve1 = ParametricFunction(
                    lambda u: (
                        1.2 * np.cos(u),
                        1.2 * np.sin(u),
                        u * 0.05
                    ), color=RED, t_range = (-3*TAU, 5*TAU, 0.01)
                ).set_shade_in_3d(True)
                axes = ThreeDAxes()
                self.add(axes, curve1)
                self.set_camera_orientation(phi=80 * DEGREES, theta=-60 * DEGREES)
                self.wait()

    .. attention::
        If your function has discontinuities, you'll have to specify the location
        of the discontinuities manually. See the following example for guidance.

    .. manim:: DiscontinuousExample
        :save_last_frame:

        class DiscontinuousExample(Scene):
            def construct(self):
                ax1 = NumberPlane((-3, 3), (-4, 4))
                ax2 = NumberPlane((-3, 3), (-4, 4))
                VGroup(ax1, ax2).arrange()
                discontinuous_function = lambda x: (x ** 2 - 2) / (x ** 2 - 4)
                incorrect = ax1.plot(discontinuous_function, color=RED)
                correct = ax2.plot(
                    discontinuous_function,
                    discontinuities=[-2, 2],  # discontinuous points
                    dt=0.1,  # left and right tolerance of discontinuity
                    color=GREEN,
                )
                self.add(ax1, ax2, incorrect, correct)
    """

    def __init__(
        self,
        function: Callable[[float], Point3DLike],
        t_range: tuple[float, float] | tuple[float, float, float] = (0, 1),
        scaling: _ScaleBase = LinearBase(),
        dt: float = 1e-8,
        discontinuities: Iterable[float] | None = None,
        use_smoothing: bool = True,
        use_vectorized: bool = False,
        **kwargs: Any,
    ):
        def internal_parametric_function(t: float) -> Point3D:
            """Wrap ``function``'s output inside a NumPy array."""
            return np.asarray(function(t))

        self.function = internal_parametric_function
        if len(t_range) == 2:
            t_range = (*t_range, 0.01)

        self.scaling = scaling

        self.dt = dt
        self.discontinuities = discontinuities
        self.use_smoothing = use_smoothing
        self.use_vectorized = use_vectorized
        self.t_min, self.t_max, self.t_step = t_range

        super().__init__(**kwargs)

    def get_function(self) -> Callable[[float], Point3D]:
        return self.function

    def get_point_from_function(self, t: float) -> Point3D:
        return self.function(t)

    def generate_points(self) -> Self:
        if self.discontinuities is not None:
            discontinuities = filter(
                lambda t: self.t_min <= t <= self.t_max,
                self.discontinuities,
            )
            discontinuities_array = np.array(list(discontinuities))
            boundary_times = np.array(
                [
                    self.t_min,
                    self.t_max,
                    *(discontinuities_array - self.dt),
                    *(discontinuities_array + self.dt),
                ],
            )
            boundary_times.sort()
        else:
            boundary_times = [self.t_min, self.t_max]

        for t1, t2 in zip(boundary_times[0::2], boundary_times[1::2]):
            t_range = np.array(
                [
                    *self.scaling.function(np.arange(t1, t2, self.t_step)),
                    self.scaling.function(t2),
                ],
            )

            if self.use_vectorized:
                x, y, z = self.function(t_range)
                if not isinstance(z, np.ndarray):
                    z = np.zeros_like(x)
                points = np.stack([x, y, z], axis=1)
            else:
                points = np.array([self.function(t) for t in t_range])

            self.start_new_path(points[0])
            self.add_points_as_corners(points[1:])
        if self.use_smoothing:
            # TODO: not in line with upstream, approx_smooth does not exist
            self.make_smooth()
        return self

    def init_points(self) -> None:
        self.generate_points()


class FunctionGraph(ParametricFunction):
    """A :class:`ParametricFunction` that spans the length of the scene by default.

    Examples
    --------
    .. manim:: ExampleFunctionGraph
        :save_last_frame:

        class ExampleFunctionGraph(Scene):
            def construct(self):
                cos_func = FunctionGraph(
                    lambda t: np.cos(t) + 0.5 * np.cos(7 * t) + (1 / 7) * np.cos(14 * t),
                    color=RED,
                )

                sin_func_1 = FunctionGraph(
                    lambda t: np.sin(t) + 0.5 * np.sin(7 * t) + (1 / 7) * np.sin(14 * t),
                    color=BLUE,
                )

                sin_func_2 = FunctionGraph(
                    lambda t: np.sin(t) + 0.5 * np.sin(7 * t) + (1 / 7) * np.sin(14 * t),
                    x_range=[-4, 4],
                    color=GREEN,
                ).move_to([0, 1, 0])

                self.add(cos_func, sin_func_1, sin_func_2)
    """

    def __init__(
        self,
        function: Callable[[float], Any],
        x_range: tuple[float, float] | tuple[float, float, float] | None = None,
        color: ParsableManimColor = YELLOW,
        **kwargs: Any,
    ) -> None:
        if x_range is None:
            x_range = (-config["frame_x_radius"], config["frame_x_radius"])

        self.x_range = x_range
        self.parametric_function: Callable[[float], Point3D] = lambda t: np.array(
            [t, function(t), 0]
        )
        self.function = function  # type: ignore[assignment]
        super().__init__(self.parametric_function, self.x_range, color=color, **kwargs)

    def get_function(self) -> Callable[[float], Any]:
        return self.function

    def get_point_from_function(self, x: float) -> Point3D:
        return self.parametric_function(x)


class ImplicitFunction(VMobject, metaclass=ConvertToOpenGL):
    def __init__(
        self,
        func: Callable[[float, float], float],
        x_range: Sequence[float] | None = None,
        y_range: Sequence[float] | None = None,
        min_depth: int = 5,
        max_quads: int = 1500,
        use_smoothing: bool = True,
        **kwargs: Any,
    ):
        """An implicit function.

        Parameters
        ----------
        func
            The implicit function in the form ``f(x, y) = 0``.
        x_range
            The x min and max of the function.
        y_range
            The y min and max of the function.
        min_depth
            The minimum depth of the function to calculate.
        max_quads
            The maximum number of quads to use.
        use_smoothing
            Whether or not to smoothen the curves.
        kwargs
            Additional parameters to pass into :class:`VMobject`


        .. note::
            A small ``min_depth`` :math:`d` means that some small details might
            be ignored if they don't cross an edge of one of the
            :math:`4^d` uniform quads.

            The value of ``max_quads`` strongly corresponds to the
            quality of the curve, but a higher number of quads
            may take longer to render.

        Examples
        --------
        .. manim:: ImplicitFunctionExample
            :save_last_frame:

            class ImplicitFunctionExample(Scene):
                def construct(self):
                    graph = ImplicitFunction(
                        lambda x, y: x * y ** 2 - x ** 2 * y - 2,
                        color=YELLOW
                    )
                    self.add(NumberPlane(), graph)
        """
        self.function = func
        self.min_depth = min_depth
        self.max_quads = max_quads
        self.use_smoothing = use_smoothing
        self.x_range = x_range or [
            -config.frame_width / 2,
            config.frame_width / 2,
        ]
        self.y_range = y_range or [
            -config.frame_height / 2,
            config.frame_height / 2,
        ]

        super().__init__(**kwargs)

    def generate_points(self) -> Self:
        p_min, p_max = (
            np.array([self.x_range[0], self.y_range[0]]),
            np.array([self.x_range[1], self.y_range[1]]),
        )
        curves = plot_isoline(
            fn=lambda u: self.function(u[0], u[1]),
            pmin=p_min,
            pmax=p_max,
            min_depth=self.min_depth,
            max_quads=self.max_quads,
        )  # returns a list of lists of 2D points
        curves = [
            np.pad(curve, [(0, 0), (0, 1)]) for curve in curves if curve != []
        ]  # add z coord as 0
        for curve in curves:
            self.start_new_path(curve[0])
            self.add_points_as_corners(curve[1:])
        if self.use_smoothing:
            self.make_smooth()
        return self

    def init_points(self) -> None:
        self.generate_points()