Datasets:
File size: 6,372 Bytes
b9f67de |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 |
from io import BytesIO
import multiprocessing as mp
from dataclasses import dataclass
import os
from pathlib import Path
import queue
import pydub
# import noisereduce as nr
import soundfile as sf
from tqdm import tqdm
from metadata import MetadataItem, LockedMetadata
from vad import remove_silence, get_vad_model_and_utils
@dataclass
class ProcessedFile:
output: Path
transcription: str
speaker_id: str
mic_id: str
@dataclass
class FileToProcess:
input: Path
input_txt: Path
# def noise_reduce(
# input: Path,
# ) -> Path:
# waveform, sample_rate = sf.read(input)
# reduced_noise = nr.reduce_noise(y=waveform, sr=sample_rate, stationary=True, prop_decrease=0.8)
# sf.write(input, reduced_noise, sample_rate)
# return input
def pad_silence(
input: Path | BytesIO,
pad_length: int,
format: str = 'wav',
) -> Path | BytesIO:
audio = pydub.AudioSegment.from_file(input, format=format)
# Add silence padding to the start and end
padded: pydub.AudioSegment = pydub.AudioSegment.silent(duration=pad_length) + audio + pydub.AudioSegment.silent(duration=pad_length)
padded.export(input, format=format)
return input
def process_worker(
work: mp.Queue,
output: mp.Queue,
) -> None:
vad_models_and_utils = get_vad_model_and_utils(use_cuda=False, use_onnx=False)
while work.qsize() > 0:
try:
nitem = work.get(timeout=1)
except queue.Empty:
break
result = process_file(
vad_models_and_utils=vad_models_and_utils,
inp=nitem.input,
inp_txt=nitem.input_txt,
output_directory=Path('dataset'),
pad_length=25,
)
output.put(result)
print(f"Worker {mp.current_process().name} finished processing.")
def process_file(
vad_models_and_utils: tuple,
inp: Path,
inp_txt: Path,
output_directory: Path,
pad_length: int = 25,
) -> ProcessedFile | None:
output_fpath = output_directory / f"{inp.stem}.wav"
if not inp.exists():
return None
if not inp_txt.exists():
return None
transcription = (
inp_txt
.read_text()
.strip()
)
speaker_id = inp.parent.name
mic_id = inp.stem.split('_')[-1] # Assuming the mic_id is the last part of the stem
audio_mem = BytesIO()
# Convert file to wav
audio: pydub.AudioSegment = pydub.AudioSegment.from_file(inp)
audio.export(audio_mem, format='wav')
audio_mem.seek(0)
silent_audio_mem = BytesIO()
# Noise Reduction
# output_fpath = noise_reduce(output_fpath)
# Trim silence and remove leading/trailing silence
_, _ = remove_silence(
vad_models_and_utils,
audio_path=audio_mem,
out_path=silent_audio_mem,
trim_just_beginning_and_end=True,
format='wav',
)
silent_audio_mem.seek(0)
# Pad silence
output_audio = pad_silence(silent_audio_mem, pad_length)
assert isinstance(output_audio, BytesIO), "Output audio should be a BytesIO object"
# Actually save the processed audio to the output path
with open(output_fpath, 'wb') as f:
f.write(output_audio.getbuffer())
return ProcessedFile(
output=output_fpath,
transcription=transcription,
speaker_id=speaker_id,
mic_id=mic_id,
)
def main() -> None:
txt = Path('txt')
wav = Path('wav48_silence_trimmed')
output_directory = Path('dataset')
metadata_fpath = output_directory / 'metadata.csv'
num_workers = os.cpu_count() or 1
# num_workers = int(num_workers * 1.5) # Use 75% of available CPU cores
mp.set_start_method("spawn", force=True)
print(f"Using {num_workers} workers for processing")
if not txt.exists() or not wav.exists():
raise ValueError("Input directories do not exist")
if not output_directory.exists():
output_directory.mkdir(parents=True, exist_ok=True)
# file_name,text,mic_id
metadata = LockedMetadata(key_field='id')
if metadata_fpath.exists():
metadata = LockedMetadata.load(metadata_fpath, key_field='id')
files_to_process: list[FileToProcess] = []
files = list(wav.glob('**/*.flac'))
# stem maps to id
# if the stem of the
for file in files:
stem = file.stem
if stem in metadata:
continue
text = stem
# Remove the _mic1 or _mic2 suffix from the stem
if stem.endswith('_mic1') or stem.endswith('_mic2'):
text = stem[:-5]
# get the directory of the file
directory = file.parent.name
input_txt = txt / directory / f"{text}.txt"
files_to_process.append(
FileToProcess(
input=file,
input_txt=input_txt,
)
)
work_queue: mp.Queue[FileToProcess] = mp.Queue()
output_queue: mp.Queue[ProcessedFile | None] = mp.Queue()
# fill the work queue with files to process
for file in files_to_process:
work_queue.put(file)
# Before processing the files, ensure that the VAD model is downloaded.
# This will ensure that the model is available for processing.
get_vad_model_and_utils(use_cuda=False, use_onnx=False)
processes = [
mp.Process(
target=process_worker,
args=(work_queue, output_queue),
)
for _ in range(num_workers)
]
# Process each file.
results: list[ProcessedFile] = []
try:
results: list[ProcessedFile] = []
for w in processes:
w.start()
for _ in tqdm(range(len(files_to_process)), desc="Processing files", unit="file"):
result = output_queue.get()
if result is None:
continue
results.append(result)
# Wait for workers to finish
for w in processes:
w.join()
finally:
for result in results:
metadata.add(
MetadataItem(
id=result.output.stem,
text=result.transcription,
speaker_id=result.speaker_id,
file_name=result.output.name,
mic_id=result.mic_id,
)
)
metadata.save(metadata_fpath)
if __name__ == '__main__':
main()
|