from io import BytesIO import multiprocessing as mp from dataclasses import dataclass import os from pathlib import Path import queue import pydub # import noisereduce as nr import soundfile as sf from tqdm import tqdm from metadata import MetadataItem, LockedMetadata from vad import remove_silence, get_vad_model_and_utils @dataclass class ProcessedFile: output: Path transcription: str speaker_id: str mic_id: str @dataclass class FileToProcess: input: Path input_txt: Path # def noise_reduce( # input: Path, # ) -> Path: # waveform, sample_rate = sf.read(input) # reduced_noise = nr.reduce_noise(y=waveform, sr=sample_rate, stationary=True, prop_decrease=0.8) # sf.write(input, reduced_noise, sample_rate) # return input def pad_silence( input: Path | BytesIO, pad_length: int, format: str = 'wav', ) -> Path | BytesIO: audio = pydub.AudioSegment.from_file(input, format=format) # Add silence padding to the start and end padded: pydub.AudioSegment = pydub.AudioSegment.silent(duration=pad_length) + audio + pydub.AudioSegment.silent(duration=pad_length) padded.export(input, format=format) return input def process_worker( work: mp.Queue, output: mp.Queue, ) -> None: vad_models_and_utils = get_vad_model_and_utils(use_cuda=False, use_onnx=False) while work.qsize() > 0: try: nitem = work.get(timeout=1) except queue.Empty: break result = process_file( vad_models_and_utils=vad_models_and_utils, inp=nitem.input, inp_txt=nitem.input_txt, output_directory=Path('dataset'), pad_length=25, ) output.put(result) print(f"Worker {mp.current_process().name} finished processing.") def process_file( vad_models_and_utils: tuple, inp: Path, inp_txt: Path, output_directory: Path, pad_length: int = 25, ) -> ProcessedFile | None: output_fpath = output_directory / f"{inp.stem}.wav" if not inp.exists(): return None if not inp_txt.exists(): return None transcription = ( inp_txt .read_text() .strip() ) speaker_id = inp.parent.name mic_id = inp.stem.split('_')[-1] # Assuming the mic_id is the last part of the stem audio_mem = BytesIO() # Convert file to wav audio: pydub.AudioSegment = pydub.AudioSegment.from_file(inp) audio.export(audio_mem, format='wav') audio_mem.seek(0) silent_audio_mem = BytesIO() # Noise Reduction # output_fpath = noise_reduce(output_fpath) # Trim silence and remove leading/trailing silence _, _ = remove_silence( vad_models_and_utils, audio_path=audio_mem, out_path=silent_audio_mem, trim_just_beginning_and_end=True, format='wav', ) silent_audio_mem.seek(0) # Pad silence output_audio = pad_silence(silent_audio_mem, pad_length) assert isinstance(output_audio, BytesIO), "Output audio should be a BytesIO object" # Actually save the processed audio to the output path with open(output_fpath, 'wb') as f: f.write(output_audio.getbuffer()) return ProcessedFile( output=output_fpath, transcription=transcription, speaker_id=speaker_id, mic_id=mic_id, ) def main() -> None: txt = Path('txt') wav = Path('wav48_silence_trimmed') output_directory = Path('dataset') metadata_fpath = output_directory / 'metadata.csv' num_workers = os.cpu_count() or 1 # num_workers = int(num_workers * 1.5) # Use 75% of available CPU cores mp.set_start_method("spawn", force=True) print(f"Using {num_workers} workers for processing") if not txt.exists() or not wav.exists(): raise ValueError("Input directories do not exist") if not output_directory.exists(): output_directory.mkdir(parents=True, exist_ok=True) # file_name,text,mic_id metadata = LockedMetadata(key_field='id') if metadata_fpath.exists(): metadata = LockedMetadata.load(metadata_fpath, key_field='id') files_to_process: list[FileToProcess] = [] files = list(wav.glob('**/*.flac')) # stem maps to id # if the stem of the for file in files: stem = file.stem if stem in metadata: continue text = stem # Remove the _mic1 or _mic2 suffix from the stem if stem.endswith('_mic1') or stem.endswith('_mic2'): text = stem[:-5] # get the directory of the file directory = file.parent.name input_txt = txt / directory / f"{text}.txt" files_to_process.append( FileToProcess( input=file, input_txt=input_txt, ) ) work_queue: mp.Queue[FileToProcess] = mp.Queue() output_queue: mp.Queue[ProcessedFile | None] = mp.Queue() # fill the work queue with files to process for file in files_to_process: work_queue.put(file) # Before processing the files, ensure that the VAD model is downloaded. # This will ensure that the model is available for processing. get_vad_model_and_utils(use_cuda=False, use_onnx=False) processes = [ mp.Process( target=process_worker, args=(work_queue, output_queue), ) for _ in range(num_workers) ] # Process each file. results: list[ProcessedFile] = [] try: results: list[ProcessedFile] = [] for w in processes: w.start() for _ in tqdm(range(len(files_to_process)), desc="Processing files", unit="file"): result = output_queue.get() if result is None: continue results.append(result) # Wait for workers to finish for w in processes: w.join() finally: for result in results: metadata.add( MetadataItem( id=result.output.stem, text=result.transcription, speaker_id=result.speaker_id, file_name=result.output.name, mic_id=result.mic_id, ) ) metadata.save(metadata_fpath) if __name__ == '__main__': main()