Datasets:
Formats:
parquet
Languages:
English
Size:
1M - 10M
ArXiv:
Tags:
visual-reasoning
spatial-reasoning
object-detection
computer-vision
autonomous-driving
bdd100k
License:
Update dataset card: Add paper/project links, correct license, and add task category (#2)
Browse files- Update dataset card: Add paper/project links, correct license, and add task category (8363ebb1606b5223673f15297cc5a31ed34ec28f)
Co-authored-by: Niels Rogge <[email protected]>
README.md
CHANGED
|
@@ -1,11 +1,12 @@
|
|
| 1 |
---
|
| 2 |
-
pretty_name: GRAID BDD100K Question-Answer Dataset
|
| 3 |
language:
|
| 4 |
- en
|
| 5 |
-
license:
|
| 6 |
task_categories:
|
| 7 |
- visual-question-answering
|
| 8 |
- object-detection
|
|
|
|
|
|
|
| 9 |
tags:
|
| 10 |
- visual-reasoning
|
| 11 |
- spatial-reasoning
|
|
@@ -61,6 +62,8 @@ dataset_info:
|
|
| 61 |
|
| 62 |
# GRAID BDD100K Question-Answer Dataset
|
| 63 |
|
|
|
|
|
|
|
| 64 |
## Overview
|
| 65 |
|
| 66 |
This dataset was generated using **GRAID** (**G**enerating **R**easoning questions from **A**nalysis of **I**mages via **D**iscriminative artificial intelligence), a framework for creating spatial reasoning datasets from object detection annotations.
|
|
@@ -177,9 +180,17 @@ This dataset is derived from the BDD100K dataset. Please refer to the [BDD100K l
|
|
| 177 |
|
| 178 |
## Citation
|
| 179 |
|
| 180 |
-
If you use this dataset in your research, please cite both the original dataset and the GRAID framework:
|
| 181 |
|
| 182 |
```bibtex
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 183 |
@dataset{graid_bdd,
|
| 184 |
title={GRAID BDD100K Question-Answer Dataset},
|
| 185 |
author={GRAID Framework},
|
|
@@ -202,4 +213,4 @@ If you use this dataset in your research, please cite both the original dataset
|
|
| 202 |
|
| 203 |
## Contact
|
| 204 |
|
| 205 |
-
For questions about this dataset or the GRAID framework, please open an issue in the repository.
|
|
|
|
| 1 |
---
|
|
|
|
| 2 |
language:
|
| 3 |
- en
|
| 4 |
+
license: cc-by-nc-sa-4.0
|
| 5 |
task_categories:
|
| 6 |
- visual-question-answering
|
| 7 |
- object-detection
|
| 8 |
+
- image-text-to-text
|
| 9 |
+
pretty_name: GRAID BDD100K Question-Answer Dataset
|
| 10 |
tags:
|
| 11 |
- visual-reasoning
|
| 12 |
- spatial-reasoning
|
|
|
|
| 62 |
|
| 63 |
# GRAID BDD100K Question-Answer Dataset
|
| 64 |
|
| 65 |
+
[Paper](https://huggingface.co/papers/2510.22118) | [Project Page](https://ke7.github.io/graid/)
|
| 66 |
+
|
| 67 |
## Overview
|
| 68 |
|
| 69 |
This dataset was generated using **GRAID** (**G**enerating **R**easoning questions from **A**nalysis of **I**mages via **D**iscriminative artificial intelligence), a framework for creating spatial reasoning datasets from object detection annotations.
|
|
|
|
| 180 |
|
| 181 |
## Citation
|
| 182 |
|
| 183 |
+
If you use this dataset in your research, please cite both the original dataset, the BDD100K dataset, and the GRAID framework paper:
|
| 184 |
|
| 185 |
```bibtex
|
| 186 |
+
@article{graid2025spatial,
|
| 187 |
+
title={GRAID: Enhancing Spatial Reasoning of VLMs Through High-Fidelity Data Generation},
|
| 188 |
+
author={{Anonymous}},
|
| 189 |
+
journal={arXiv preprint arXiv:2510.22118},
|
| 190 |
+
year={2025},
|
| 191 |
+
url={https://huggingface.co/papers/2510.22118}
|
| 192 |
+
}
|
| 193 |
+
|
| 194 |
@dataset{graid_bdd,
|
| 195 |
title={GRAID BDD100K Question-Answer Dataset},
|
| 196 |
author={GRAID Framework},
|
|
|
|
| 213 |
|
| 214 |
## Contact
|
| 215 |
|
| 216 |
+
For questions about this dataset or the GRAID framework, please open an issue in the repository.
|