Datasets:

Modalities:
Text
Formats:
json
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
kiyam commited on
Commit
c39a1b3
Β·
verified Β·
1 Parent(s): 811489e

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +57 -3
README.md CHANGED
@@ -1,3 +1,57 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # πŸ“„ ddro-msmarco-document-ranking-dataset
2
+
3
+ This dataset provides the **Top-300K subset** of the MS MARCO Document Ranking collection, processed for training and evaluating the DDRO (Direct Document Relevance Optimization) models.
4
+
5
+ It includes:
6
+ - Full document body text.
7
+ - Sentence-level tokenization for improved modeling.
8
+ - Selection based on document popularity (click counts).
9
+
10
+ ---
11
+
12
+ ### πŸ“š Contents
13
+
14
+ | File | Description |
15
+ |:-----|:------------|
16
+ | `msmarco-docs-sents.top.300k.json` | Top-300K documents selected by highest click counts, with sentence tokenization. |
17
+
18
+ Each entry contains:
19
+ - `docid`
20
+ - `url`
21
+ - `title`
22
+ - `body`
23
+ - `sents` (tokenized sentences list)
24
+
25
+ ---
26
+
27
+ ### πŸ“Œ Dataset Details
28
+
29
+ - **Source**:
30
+ MS MARCO Document Ranking collection. [here](https://microsoft.github.io/msmarco/Datasets.html#document-ranking-dataset)
31
+ - **Selection**:
32
+ Top-300K documents ranked by click frequency from training qrels.
33
+ - **Preprocessing**:
34
+ Full body text tokenized into sentences for improved document structure.
35
+ - **Reproducibility**:
36
+ The full preprocessing pipeline is available [here](https://github.com/kidist-amde/ddro/blob/main/src/data/preprocessing/preprocess_msmarco_documents.py).
37
+
38
+
39
+ **Note**:
40
+ Only the **Top-300K** split is used. The random sampling is **not used** for any experiments.
41
+
42
+ ---
43
+
44
+ ### πŸ“– Citation
45
+
46
+ If you use this dataset, please cite:
47
+
48
+ ```bibtex
49
+ @article{mekonnen2025lightweight,
50
+ title={Lightweight and Direct Document Relevance Optimization for Generative Information Retrieval},
51
+ author={Mekonnen, Kidist Amde and Tang, Yubao and de Rijke, Maarten},
52
+ journal={arXiv preprint arXiv:2504.05181},
53
+ year={2025}
54
+ }
55
+ ```
56
+ ---
57
+