File size: 6,895 Bytes
0a8caf9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ce0436
0a8caf9
 
 
 
 
 
7ce0436
 
 
0a8caf9
c640583
0a8caf9
c640583
0a8caf9
c640583
 
 
0a8caf9
 
c640583
 
0a8caf9
c640583
 
0a8caf9
db17dee
 
 
 
 
c640583
 
0a8caf9
c640583
 
 
 
 
 
 
 
0a8caf9
c640583
0a8caf9
c640583
0a8caf9
c640583
0a8caf9
c640583
0a8caf9
c640583
0a8caf9
c640583
0a8caf9
c640583
 
 
0a8caf9
 
c640583
 
 
 
 
0a8caf9
c640583
 
0a8caf9
 
7ce0436
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
---
viewer: true
dataset_info:
- config_name: Chinese
  features:
  - name: audio
    dtype:
      audio:
        sampling_rate: 16000
  - name: duration
    dtype: float64
  - name: text
    dtype: string
  - name: traditional_chinese
    dtype: string
  - name: English
    dtype: string
  - name: Vietnamese
    dtype: string
  - name: French
    dtype: string
  - name: German
    dtype: string
  splits:
  - name: train
    num_examples: 1242
  - name: eval
    num_examples: 91
  - name: corrected.test
    num_examples: 225
- config_name: English
  features:
  - name: audio
    dtype:
      audio:
        sampling_rate: 16000
  - name: duration
    dtype: float64
  - name: text
    dtype: string
  - name: Vietnamese
    dtype: string
  - name: Chinese
    dtype: string
  - name: traditional_chinese
    dtype: string
  - name: French
    dtype: string
  - name: German
    dtype: string
  - name: source
    dtype: string
  - name: link
    dtype: string
  - name: type
    dtype: string
  - name: topic
    dtype: string
  - name: icd-10 code
    dtype: string
  - name: speaker
    dtype: string
  - name: role
    dtype: string
  - name: gender
    dtype: string
  - name: accent
    dtype: string
  splits:
  - name: train
    num_examples: 25512
  - name: eval
    num_examples: 2816
  - name: corrected.test
    num_examples: 4751
- config_name: French
  features:
  - name: audio
    dtype:
      audio:
        sampling_rate: 16000
  - name: duration
    dtype: float64
  - name: text
    dtype: string
  - name: English
    dtype: string
  - name: Vietnamese
    dtype: string
  - name: Chinese
    dtype: string
  - name: traditional_chinese
    dtype: string
  - name: German
    dtype: string
  splits:
  - name: train
    num_examples: 1403
  - name: eval
    num_examples: 42
  - name: corrected.test
    num_examples: 344
- config_name: German
  features:
  - name: audio
    dtype:
      audio:
        sampling_rate: 16000
  - name: duration
    dtype: float64
  - name: text
    dtype: string
  - name: English
    dtype: string
  - name: Vietnamese
    dtype: string
  - name: Chinese
    dtype: string
  - name: traditional_chinese
    dtype: string
  - name: French
    dtype: string
  splits:
  - name: train
    num_examples: 1443
  - name: eval
    num_examples: 287
  - name: corrected.test
    num_examples: 1091
- config_name: Vietnamese
  features:
  - name: audio
    dtype:
      audio:
        sampling_rate: 16000
  - name: duration
    dtype: float64
  - name: text
    dtype: string
  - name: English
    dtype: string
  - name: Chinese
    dtype: string
  - name: traditional_chinese
    dtype: string
  - name: French
    dtype: string
  - name: German
    dtype: string
  splits:
  - name: train
    num_examples: 4548
  - name: eval
    num_examples: 1137
  - name: corrected.test
    num_examples: 3437
configs:
- config_name: Chinese
  data_files:
  - split: train
    path: chinese/train-*
  - split: eval
    path: chinese/eval-*
  - split: corrected.test
    path: chinese/corrected.test-*
- config_name: English
  data_files:
  - split: train
    path: english/train-*
  - split: eval
    path: english/eval-*
  - split: corrected.test
    path: english/corrected.test-*
- config_name: French
  data_files:
  - split: train
    path: french/train-*
  - split: eval
    path: french/eval-*
  - split: corrected.test
    path: french/corrected.test-*
- config_name: German
  data_files:
  - split: train
    path: german/train-*
  - split: eval
    path: german/eval-*
  - split: corrected.test
    path: german/corrected.test-*
- config_name: Vietnamese
  data_files:
  - split: train
    path: vietnamese/train-*
  - split: eval
    path: vietnamese/eval-*
  - split: corrected.test
    path: vietnamese/corrected.test-*
task_categories:
- translation
- automatic-speech-recognition
language:
- vi
- en
- de
- zh
- fr
license: mit
tags:
- medical
---
# MultiMed-ST: Large-scale Many-to-many Multilingual Medical Speech Translation

**<div align="center">Preprint</div>**

<div align="center">Khai Le-Duc*, Tuyen Tran*,</div>
<div align="center">Bach Phan Tat, Nguyen Kim Hai Bui, Quan Dang, Hung-Phong Tran, Thanh-Thuy Nguyen, Ly Nguyen, Tuan-Minh Phan, Thi Thu Phuong Tran, Chris Ngo,</div>
<div align="center">Nguyen X. Khanh**, Thanh Nguyen-Tang**</div>


<div align="center">*Equal contribution</div>
<div align="center">**Equal supervision</div>

* **Abstract:**
Multilingual speech translation (ST) in the medical domain  enhances patient care by enabling efficient communication across language barriers, alleviating specialized workforce shortages, and facilitating improved diagnosis and treatment, particularly during pandemics. In this work, we present the first systematic study on medical ST, to our best knowledge, by releasing *MultiMed-ST*, a large-scale ST dataset for the medical domain, spanning all translation directions in five languages: Vietnamese, English, German, French,  Traditional Chinese and Simplified Chinese, together with the models. With 290,000 samples, our dataset is the largest medical machine translation (MT) dataset and the largest many-to-many multilingual ST among all domains. Secondly, we present the most extensive analysis study in ST research to date, including: empirical baselines, bilingual-multilingual comparative study, end-to-end vs. cascaded comparative study, task-specific vs. multi-task sequence-to-sequence (seq2seq) comparative study, code-switch analysis, and quantitative-qualitative error analysis. All code, data, and models are available online:  [https://github.com/leduckhai/MultiMed-ST](https://github.com/leduckhai/MultiMed-ST).

> Please press ⭐ button and/or cite papers if you feel helpful.

* **GitHub:**
[https://github.com/leduckhai/MultiMed-ST](https://github.com/leduckhai/MultiMed-ST)

* **Citation:**
Please cite this paper: [https://arxiv.org/abs/2504.03546](https://arxiv.org/abs/2504.03546)

``` bibtex
@article{le2025multimedst,
  title={MultiMed-ST: Large-scale Many-to-many Multilingual Medical Speech Translation},
  author={Le-Duc, Khai and Tran, Tuyen and Tat, Bach Phan and Bui, Nguyen Kim Hai and Dang, Quan and Tran, Hung-Phong and Nguyen, Thanh-Thuy and Nguyen, Ly and Phan, Tuan-Minh and Tran, Thi Thu Phuong and others},
  journal={arXiv preprint arXiv:2504.03546},
  year={2025}
}
```

## Dataset and Models:

Dataset: [HuggingFace dataset](https://huggingface.co/datasets/leduckhai/MultiMed-ST)

Fine-tuned models: [HuggingFace models](https://huggingface.co/leduckhai/MultiMed-ST)

## Contact:

Core developers:

**Khai Le-Duc**
```
University of Toronto, Canada
Email: [email protected]
GitHub: https://github.com/leduckhai
```

**Tuyen Tran**
```
Hanoi University of Science and Technology, Vietnam
Email: [email protected]
```

**Bui Nguyen Kim Hai**
```
Eötvös Loránd University, Hungary
Email: [email protected]
```