|
|
--- |
|
|
dataset_info: |
|
|
- config_name: journalistic |
|
|
features: |
|
|
- name: text |
|
|
dtype: string |
|
|
- name: label |
|
|
dtype: int64 |
|
|
splits: |
|
|
- name: valid |
|
|
num_bytes: 571631 |
|
|
num_examples: 1000 |
|
|
- name: train |
|
|
num_bytes: 1165703801.742406 |
|
|
num_examples: 1776290 |
|
|
- name: test |
|
|
num_bytes: 27508.055555555555 |
|
|
num_examples: 35 |
|
|
download_size: 7801787253 |
|
|
dataset_size: 1166302940.7979615 |
|
|
- config_name: legal |
|
|
features: |
|
|
- name: text |
|
|
dtype: string |
|
|
- name: label |
|
|
dtype: int64 |
|
|
splits: |
|
|
- name: test |
|
|
num_bytes: 10385 |
|
|
num_examples: 37 |
|
|
- name: valid |
|
|
num_bytes: 282724.0 |
|
|
num_examples: 1000 |
|
|
- name: train |
|
|
num_bytes: 859653342.1992471 |
|
|
num_examples: 2961596 |
|
|
download_size: 3051546595 |
|
|
dataset_size: 859946451.1992471 |
|
|
- config_name: literature |
|
|
features: |
|
|
- name: text |
|
|
dtype: string |
|
|
- name: label |
|
|
dtype: int64 |
|
|
splits: |
|
|
- name: test |
|
|
num_bytes: 12767 |
|
|
num_examples: 36 |
|
|
- name: valid |
|
|
num_bytes: 373696.9233584274 |
|
|
num_examples: 1000 |
|
|
- name: train |
|
|
num_bytes: 28191249.0 |
|
|
num_examples: 75512 |
|
|
download_size: 174029597 |
|
|
dataset_size: 28577712.92335843 |
|
|
- config_name: politics |
|
|
features: |
|
|
- name: text |
|
|
dtype: string |
|
|
- name: label |
|
|
dtype: int64 |
|
|
splits: |
|
|
- name: test |
|
|
num_bytes: 64499 |
|
|
num_examples: 48 |
|
|
- name: valid |
|
|
num_bytes: 1469255.532624226 |
|
|
num_examples: 1000 |
|
|
- name: train |
|
|
num_bytes: 44787070.0 |
|
|
num_examples: 30495 |
|
|
download_size: 154407264 |
|
|
dataset_size: 46320824.53262423 |
|
|
- config_name: social_media |
|
|
features: |
|
|
- name: text |
|
|
dtype: string |
|
|
- name: label |
|
|
dtype: int64 |
|
|
splits: |
|
|
- name: test |
|
|
num_bytes: 6146 |
|
|
num_examples: 28 |
|
|
- name: valid |
|
|
num_bytes: 110535.71291367509 |
|
|
num_examples: 1000 |
|
|
- name: train |
|
|
num_bytes: 261685711.908761 |
|
|
num_examples: 2367418 |
|
|
download_size: 1689212607 |
|
|
dataset_size: 261802393.62167466 |
|
|
- config_name: web |
|
|
features: |
|
|
- name: text |
|
|
dtype: string |
|
|
- name: label |
|
|
dtype: int64 |
|
|
splits: |
|
|
- name: test |
|
|
num_bytes: 64024 |
|
|
num_examples: 34 |
|
|
- name: valid |
|
|
num_bytes: 2216516.5075847963 |
|
|
num_examples: 1000 |
|
|
- name: train |
|
|
num_bytes: 256894009.0 |
|
|
num_examples: 86909 |
|
|
download_size: 1377291469 |
|
|
dataset_size: 259174549.5075848 |
|
|
configs: |
|
|
- config_name: journalistic |
|
|
data_files: |
|
|
- split: train |
|
|
path: journalistic/train-* |
|
|
- split: valid |
|
|
path: journalistic/valid-* |
|
|
- split: test |
|
|
path: journalistic/test-* |
|
|
- config_name: legal |
|
|
data_files: |
|
|
- split: train |
|
|
path: legal/train-* |
|
|
- split: valid |
|
|
path: legal/valid-* |
|
|
- split: test |
|
|
path: legal/test-* |
|
|
- config_name: literature |
|
|
data_files: |
|
|
- split: train |
|
|
path: literature/train-* |
|
|
- split: valid |
|
|
path: literature/valid-* |
|
|
- split: test |
|
|
path: literature/test-* |
|
|
- config_name: politics |
|
|
data_files: |
|
|
- split: train |
|
|
path: politics/train-* |
|
|
- split: valid |
|
|
path: politics/valid-* |
|
|
- split: test |
|
|
path: politics/test-* |
|
|
- config_name: social_media |
|
|
data_files: |
|
|
- split: train |
|
|
path: social_media/train-* |
|
|
- split: valid |
|
|
path: social_media/valid-* |
|
|
- split: test |
|
|
path: social_media/test-* |
|
|
- config_name: web |
|
|
data_files: |
|
|
- split: train |
|
|
path: web/train-* |
|
|
- split: valid |
|
|
path: web/valid-* |
|
|
- split: test |
|
|
path: web/test-* |
|
|
--- |
|
|
|
|
|
# PtBrVId |
|
|
|
|
|
**PtBrVId** is a Portuguese Variety Identification corpus, built by combining pre-existing datasets originally created for different NLP tasks and released under permissive licenses. |
|
|
|
|
|
Our goal is to provide a large, diverse, and multi-domain resource for studying and improving automatic identification of **European Portuguese (PT-PT)** and **Brazilian Portuguese (PT-BR)**. |
|
|
|
|
|
--- |
|
|
|
|
|
## 📚 Data Sources |
|
|
|
|
|
The corpus is composed of datasets from various domains, each selected to ensure (as much as possible) mono-variety content. The current release is silver-labeled and unsupervised, meaning that we cannot fully guarantee that all documents are strictly mono-variety. A future version will include a refined annotation schema with both automatic and manual verification. |
|
|
|
|
|
<p align="center"> |
|
|
<table> |
|
|
<tr> |
|
|
<th>Domain</th> |
|
|
<th>Variety</th> |
|
|
<th>Dataset</th> |
|
|
<th>Original Task</th> |
|
|
<th># Docs</th> |
|
|
<th>License</th> |
|
|
<th>Silver Labeled</th> |
|
|
</tr> |
|
|
<tr> |
|
|
<td rowspan="5">Literature</td> |
|
|
<td rowspan="3">PT-PT</td> |
|
|
<td><a href="http://arquivopessoa.net/">Arquivo Pessoa</a></td> |
|
|
<td>-</td> |
|
|
<td>~4k</td> |
|
|
<td>CC</td> |
|
|
<td>✔</td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td><a href="https://www.gutenberg.org/ebooks/bookshelf/99">Gutenberg Project</a></td> |
|
|
<td>-</td> |
|
|
<td>6</td> |
|
|
<td>CC</td> |
|
|
<td>✔</td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td><a href="https://www.clul.ulisboa.pt/recurso/corpus-de-textos-literarios">LT-Corpus</a></td> |
|
|
<td>-</td> |
|
|
<td>56</td> |
|
|
<td>ELRA END USER</td> |
|
|
<td>✘</td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td rowspan="2">PT-BR</td> |
|
|
<td><a href="https://www.kaggle.com/datasets/rtatman/brazilian-portuguese-literature-corpus">Brazilian Literature</a></td> |
|
|
<td>Author Identification</td> |
|
|
<td>81</td> |
|
|
<td>CC</td> |
|
|
<td>✘</td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td>LT-Corpus</td> |
|
|
<td>-</td> |
|
|
<td>8</td> |
|
|
<td>ELRA END USER</td> |
|
|
<td>✘</td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td rowspan="2">Politics</td> |
|
|
<td>PT-PT</td> |
|
|
<td><a href="http://www.statmt.org/europarl/">Koehn (2005) Europarl</a></td> |
|
|
<td>Machine Translation</td> |
|
|
<td>~10k</td> |
|
|
<td>CC</td> |
|
|
<td>✘</td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td>PT-BR</td> |
|
|
<td>Brazilian Senate Speeches<sup>1</sup></td> |
|
|
<td>-</td> |
|
|
<td>~5k</td> |
|
|
<td>CC</td> |
|
|
<td>✔</td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td rowspan="2">Journalistic</td> |
|
|
<td>PT-PT</td> |
|
|
<td><a href="https://www.linguateca.pt/CETEMPublico/">CETEM Público</a></td> |
|
|
<td>-</td> |
|
|
<td>1M</td> |
|
|
<td>CC</td> |
|
|
<td>✘</td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td>PT-BR</td> |
|
|
<td><a href="https://www.linguateca.pt/CETEMFolha/">CETEM Folha</a></td> |
|
|
<td>-</td> |
|
|
<td>272k</td> |
|
|
<td>CC</td> |
|
|
<td>✘</td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td rowspan="3">Social Media</td> |
|
|
<td>PT-PT</td> |
|
|
<td><a href="https://www.aclweb.org/anthology/2021.ranlp-1.37/">Ramalho (2021)</a></td> |
|
|
<td>Fake News Detection</td> |
|
|
<td>2M</td> |
|
|
<td>MIT</td> |
|
|
<td>✔</td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td rowspan="2">PT-BR</td> |
|
|
<td><a href="https://www.aclweb.org/anthology/2022.lrec-1.322/">Vargas (2022)</a></td> |
|
|
<td>Hate Speech Detection</td> |
|
|
<td>5k</td> |
|
|
<td>CC-BY-NC-4.0</td> |
|
|
<td>✘</td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td><a href="https://www.aclweb.org/anthology/2021.wlp-1.72/">Cunha (2021)</a></td> |
|
|
<td>Fake News Detection</td> |
|
|
<td>2k</td> |
|
|
<td>GPL-3.0</td> |
|
|
<td>✔</td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td>Web</td> |
|
|
<td>BOTH</td> |
|
|
<td><a href="https://www.aclweb.org/anthology/2020.lrec-1.451/">Ortiz-Suarez (2020)</a></td> |
|
|
<td>-</td> |
|
|
<td>10k</td> |
|
|
<td>CC</td> |
|
|
<td>✔</td> |
|
|
</tr> |
|
|
</table> |
|
|
</p> |
|
|
|
|
|
<p align="center"><em>Table 1: PtBrVId data sources and metadata.</em></p> |
|
|
|
|
|
<sup>1</sup> The **Brazilian Senate Speeches** dataset was created by the authors through web crawling of the Brazilian Senate website and is available on [Hugging Face](https://huggingface.co/). |
|
|
|
|
|
A raw version of the dataset is available [here](https://huggingface.co/datasets/liaad/PtBrVId-Raw). |
|
|
|
|
|
--- |
|
|
|
|
|
## 🛠 Annotation & Preprocessing |
|
|
|
|
|
### Annotation |
|
|
We selected data sources known to contain primarily mono-variety Portuguese texts. While this approach helps ensure quality, this **first release** is entirely unsupervised. A planned **v2** will introduce a hybrid annotation strategy combining automated labeling and manual review. |
|
|
|
|
|
### Preprocessing Pipeline |
|
|
To standardize and clean the data, we applied the following steps: |
|
|
|
|
|
1. **Remove NaN values**. |
|
|
2. **Remove empty documents**. |
|
|
3. **Remove duplicate documents**. |
|
|
4. Apply the [`clean-text`](https://github.com/jfilter/clean-text) library to strip non-relevant content for variety identification. |
|
|
5. Remove outlier documents with lengths below `Q1 - 1.5 × IQR` or above `Q3 + 1.5 × IQR`, where `Q1` and `Q3` are the first and third quartiles, and `IQR` is the interquartile range. |
|
|
|
|
|
--- |
|
|
|
|
|
## 📖 Citation |
|
|
|
|
|
If you use this corpus, please cite: |
|
|
|
|
|
```bibtex |
|
|
@article{Sousa_Almeida_Silvano_Cantante_Campos_Jorge_2025, |
|
|
title={Enhancing Portuguese Variety Identification with Cross-Domain Approaches}, |
|
|
journal={Proceedings of the AAAI Conference on Artificial Intelligence}, |
|
|
volume={39}, |
|
|
number={24}, |
|
|
pages={25192--25200}, |
|
|
year={2025}, |
|
|
doi={10.1609/aaai.v39i24.34705}, |
|
|
author={Sousa, Hugo and Almeida, Rúben and Silvano, Purificação and Cantante, Inês and Campos, Ricardo and Jorge, Alípio} |
|
|
} |
|
|
|