Venkatachalam commited on
Commit
864370e
·
1 Parent(s): 2a868cd
Files changed (1) hide show
  1. README.md +101 -24
README.md CHANGED
@@ -131,45 +131,119 @@ Exploring cellular heterogeneity, identifying novel cell states, and characteriz
131
  - Discovering biomarkers or therapeutic targets for sarcopenia and other age-related muscle pathologies.
132
 
133
  ### **Machine Learning**
134
- - **Clustering:** Applying clustering algorithms (e.g., K-Means, Leiden) on `pca_embeddings.parquet` or `umap_embeddings.parquet` to identify distinct cell populations or sub-populations.
135
  - **Classification:** Building models to classify cell types, age groups (e.g., young vs. old), or disease states (if available) using `pca_embeddings.parquet` or `umap_embeddings.parquet` as features and `cell_metadata.parquet` for labels.
136
  - **Regression:** Predicting the biological age of a cell or donor based on gene expression or cell type composition.
137
  - **Dimensionality Reduction & Visualization:** Using the PCA and UMAP embeddings for generating 2D or 3D plots to visualize complex cell relationships and age-related trends.
138
  - **Feature Selection:** Identifying key genes or principal components relevant to muscle aging processes.
139
 
140
- These Parquet files can be easily loaded into Pandas DataFrames in Python, or into other data analysis environments that support the Parquet format.
 
141
 
142
  ```python
143
  import pandas as pd
144
-
145
- # Load expression data
146
- df_expression = pd.read_parquet("human_muscle_aging_atlas_ml_data/expression.parquet")
147
-
148
- # Load PCA embeddings
149
- df_pca_embeddings = pd.read_parquet("human_muscle_aging_atlas_ml_data/pca_embeddings.parquet")
150
-
151
- # Load UMAP embeddings
152
- df_umap_embeddings = pd.read_parquet("human_muscle_aging_atlas_ml_data/umap_embeddings.parquet")
153
-
154
- # Load cell metadata
155
- df_cell_metadata = pd.read_parquet("human_muscle_aging_atlas_ml_data/cell_metadata.parquet")
156
-
157
- # Load donor metadata (if available)
158
- try:
159
- df_donor_metadata = pd.read_parquet("human_muscle_aging_atlas_ml_data/donor_metadata.parquet")
160
- except FileNotFoundError:
161
- print("Donor metadata file not found (might not be generated if donor IDs were not clear).")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
162
  df_donor_metadata = None
163
 
164
 
 
165
  print("Expression data shape:", df_expression.shape)
166
  print("PCA embeddings shape:", df_pca_embeddings.shape)
167
  print("UMAP embeddings shape:", df_umap_embeddings.shape)
168
  print("Cell metadata shape:", df_cell_metadata.shape)
 
 
 
 
 
169
  if df_donor_metadata is not None:
170
  print("Donor metadata shape:", df_donor_metadata.shape)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
171
  ```
172
 
 
 
 
173
  ## **6. Citation**
174
 
175
  Please ensure you cite the original source of the Human Skeletal Muscle Aging Atlas data. Refer to the project's official website for the most up-to-date citation information for the atlas and its associated publications:
@@ -182,8 +256,11 @@ If you use the `scanpy` library for any further analysis or preprocessing, pleas
182
  ## **7. Contributions**
183
 
184
  This dataset was processed and prepared by:
185
- - Venkatachalam
186
- - Pooja
187
- - Albert
188
 
189
- *Curated on June 15, 2025.*
 
 
 
 
 
 
 
131
  - Discovering biomarkers or therapeutic targets for sarcopenia and other age-related muscle pathologies.
132
 
133
  ### **Machine Learning**
134
+ - **Clustering:** Applying clustering algorithms (e.g., K-Means, Louvain) on `pca_embeddings.parquet` or `umap_embeddings.parquet` to identify distinct cell populations or sub-populations.
135
  - **Classification:** Building models to classify cell types, age groups (e.g., young vs. old), or disease states (if available) using `pca_embeddings.parquet` or `umap_embeddings.parquet` as features and `cell_metadata.parquet` for labels.
136
  - **Regression:** Predicting the biological age of a cell or donor based on gene expression or cell type composition.
137
  - **Dimensionality Reduction & Visualization:** Using the PCA and UMAP embeddings for generating 2D or 3D plots to visualize complex cell relationships and age-related trends.
138
  - **Feature Selection:** Identifying key genes or principal components relevant to muscle aging processes.
139
 
140
+ ### **Direct Download and Loading from Hugging Face Hub**
141
+ This dataset is hosted on the Hugging Face Hub, allowing for easy programmatic download and loading of its component files.
142
 
143
  ```python
144
  import pandas as pd
145
+ from huggingface_hub import hf_hub_download
146
+ import os
147
+
148
+ # Define the Hugging Face repository ID and the local directory for downloads
149
+ HF_REPO_ID = "longevity-db/human-muscle-aging-atlas-snRNAseq" # THIS IS YOUR NEW REPO ID
150
+ LOCAL_DATA_DIR = "downloaded_human_muscle_data"
151
+
152
+ os.makedirs(LOCAL_DATA_DIR, exist_ok=True)
153
+ print(f"Created local download directory: {LOCAL_DATA_DIR}")
154
+
155
+ # List of Parquet files to download (matching what your processing script outputs)
156
+ parquet_files = [
157
+ "expression.parquet",
158
+ "gene_metadata.parquet",
159
+ "cell_metadata.parquet",
160
+ "pca_embeddings.parquet",
161
+ "pca_explained_variance.parquet",
162
+ "umap_embeddings.parquet",
163
+ "highly_variable_gene_metadata.parquet",
164
+ "gene_statistics.parquet",
165
+ "cell_type_proportions_overall.parquet",
166
+ "donor_metadata.parquet"
167
+ # Note: cell_type_proportions_by_{grouping_column}.parquet might have a dynamic name,
168
+ # so users might need to download it separately or infer its name.
169
+ ]
170
+
171
+ # Download each file
172
+ downloaded_paths = {}
173
+ for file_name in parquet_files:
174
+ try:
175
+ path = hf_hub_download(repo_id=HF_REPO_ID, filename=file_name, local_dir=LOCAL_DATA_DIR)
176
+ downloaded_paths[file_name] = path
177
+ print(f"Downloaded {file_name} to: {path}")
178
+ except Exception as e:
179
+ print(f"Warning: Could not download {file_name}. It might not be in the repository or its name differs. Error: {e}")
180
+
181
+ # Load core Parquet files into Pandas DataFrames
182
+ df_expression = pd.read_parquet(downloaded_paths["expression.parquet"])
183
+ df_pca_embeddings = pd.read_parquet(downloaded_paths["pca_embeddings.parquet"])
184
+ df_umap_embeddings = pd.read_parquet(downloaded_paths["umap_embeddings.parquet"])
185
+ df_cell_metadata = pd.read_parquet(downloaded_paths["cell_metadata.parquet"])
186
+ df_gene_metadata = pd.read_parquet(downloaded_paths["gene_metadata.parquet"])
187
+ df_pca_explained_variance = pd.read_parquet(downloaded_paths["pca_explained_variance.parquet"])
188
+ df_hvg_metadata = pd.read_parquet(downloaded_paths["highly_variable_gene_metadata.parquet"])
189
+ df_gene_stats = pd.read_parquet(downloaded_paths["gene_statistics.parquet"])
190
+ df_cell_type_proportions_overall = pd.read_parquet(downloaded_paths["cell_type_proportions_overall.parquet"])
191
+ try: # Donor metadata might be skipped if no column found, so use try-except
192
+ df_donor_metadata = pd.read_parquet(downloaded_paths["donor_metadata.parquet"])
193
+ except KeyError:
194
  df_donor_metadata = None
195
 
196
 
197
+ print("\n--- Data Loaded from Hugging Face Hub ---")
198
  print("Expression data shape:", df_expression.shape)
199
  print("PCA embeddings shape:", df_pca_embeddings.shape)
200
  print("UMAP embeddings shape:", df_umap_embeddings.shape)
201
  print("Cell metadata shape:", df_cell_metadata.shape)
202
+ print("Gene metadata shape:", df_gene_metadata.shape)
203
+ print("PCA explained variance shape:", df_pca_explained_variance.shape)
204
+ print("HVG metadata shape:", df_hvg_metadata.shape)
205
+ print("Gene statistics shape:", df_gene_stats.shape)
206
+ print("Overall cell type proportions shape:", df_cell_type_proportions_overall.shape)
207
  if df_donor_metadata is not None:
208
  print("Donor metadata shape:", df_donor_metadata.shape)
209
+
210
+
211
+ # Example: Prepare data for an age prediction model
212
+ # IMPORTANT: You need to inspect `df_cell_metadata.columns` to find the actual age and cell type columns.
213
+ print("\nAvailable columns in cell_metadata.parquet (df_cell_metadata.columns):")
214
+ print(df_cell_metadata.columns.tolist())
215
+
216
+ # --- USER ACTION REQUIRED ---
217
+ # Replace 'your_age_column_name' and 'your_cell_type_column_name'
218
+ # with the actual column names found in your df_cell_metadata.columns output.
219
+ # Common names might be 'age', 'Age_Group', 'Age_in_weeks', 'cell_type_annotation', 'CellType' etc.
220
+ age_column_name = 'Age' # <<<--- UPDATE THIS with the actual age column name found in your data (e.g., 'Age', 'age_group', 'Age_in_months')
221
+ cell_type_column_name = 'cell_type' # <<<--- UPDATE THIS with the actual cell type column name (e.g., 'cell_type_annotation', 'CellType')
222
+ # --- END USER ACTION REQUIRED ---
223
+
224
+
225
+ # Example: Using age for a prediction task
226
+ if age_column_name in df_cell_metadata.columns:
227
+ X_features_age_prediction = df_pca_embeddings # Or df_umap_embeddings, or df_expression (if manageable)
228
+ y_labels_age_prediction = df_cell_metadata[age_column_name]
229
+ print(f"\nPrepared X (features) for age prediction with shape {X_features_age_prediction.shape} and y (labels) with shape {y_labels_age_prediction.shape}")
230
+ else:
231
+ print(f"\nWarning: Column '{age_column_name}' not found in cell metadata for age prediction example. Please check your data.")
232
+
233
+ # Example: Using cell type for a classification task
234
+ if cell_type_column_name in df_cell_metadata.columns:
235
+ X_features_cell_type = df_pca_embeddings # Or df_umap_embeddings, or df_expression
236
+ y_labels_cell_type = df_cell_metadata[cell_type_column_name]
237
+ print(f"Prepared X (features) for cell type classification with shape {X_features_cell_type.shape} and y (labels) with shape {y_labels_cell_type.shape}")
238
+ else:
239
+ print(f"Warning: Column '{cell_type_column_name}' not found in cell metadata for cell type classification example. Please check your data.")
240
+
241
+ # This data can then be split into train/test sets and used to train various ML models.
242
  ```
243
 
244
+
245
+ -----
246
+
247
  ## **6. Citation**
248
 
249
  Please ensure you cite the original source of the Human Skeletal Muscle Aging Atlas data. Refer to the project's official website for the most up-to-date citation information for the atlas and its associated publications:
 
256
  ## **7. Contributions**
257
 
258
  This dataset was processed and prepared by:
 
 
 
259
 
260
+ - Venkatachalam
261
+ - Pooja
262
+ - Albert
263
+
264
+ *Curated on June 15, 2025.*
265
+
266
+ **Hugging Face Repository:** [https://huggingface.co/datasets/longevity-db/human-muscle-aging-atlas-snRNAseq](https://huggingface.co/datasets/longevity-db/human-muscle-aging-atlas-snRNAseq)