Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
|
@@ -1,13 +1,18 @@
|
|
| 1 |
---
|
|
|
|
| 2 |
language:
|
| 3 |
- fr
|
| 4 |
-
license: apache-2.0
|
| 5 |
multilinguality:
|
| 6 |
- monolingual
|
| 7 |
-
|
| 8 |
-
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
source_datasets:
|
| 10 |
- original
|
|
|
|
| 11 |
task_categories:
|
| 12 |
- text-generation
|
| 13 |
- table-question-answering
|
|
@@ -15,40 +20,10 @@ task_categories:
|
|
| 15 |
- text-retrieval
|
| 16 |
- question-answering
|
| 17 |
- text-classification
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
- finetuning
|
| 21 |
-
- legal
|
| 22 |
-
- french law
|
| 23 |
-
- droit français
|
| 24 |
-
- Code du sport
|
| 25 |
-
dataset_info:
|
| 26 |
-
features:
|
| 27 |
-
- name: instruction
|
| 28 |
-
dtype: string
|
| 29 |
-
- name: input
|
| 30 |
-
dtype: string
|
| 31 |
-
- name: output
|
| 32 |
-
dtype: string
|
| 33 |
-
- name: start
|
| 34 |
-
dtype: string
|
| 35 |
-
- name: expiration
|
| 36 |
-
dtype: string
|
| 37 |
-
- name: num
|
| 38 |
-
dtype: string
|
| 39 |
-
splits:
|
| 40 |
-
- name: train
|
| 41 |
-
num_bytes: 2399997
|
| 42 |
-
num_examples: 1958
|
| 43 |
-
download_size: 859438
|
| 44 |
-
dataset_size: 2399997
|
| 45 |
-
configs:
|
| 46 |
-
- config_name: default
|
| 47 |
-
data_files:
|
| 48 |
-
- split: train
|
| 49 |
-
path: data/train-*
|
| 50 |
---
|
| 51 |
-
# Code du sport, non-instruct (2024-
|
| 52 |
|
| 53 |
This project focuses on fine-tuning pre-trained language models to create efficient and accurate models for legal practice.
|
| 54 |
|
|
@@ -64,6 +39,120 @@ Instruction-based fine-tuning significantly enhances the performance of LLMs in
|
|
| 64 |
- Interpretability: Instruction-based fine-tuning also makes LLM behavior more interpretable. Since the instructions are human-readable, it becomes easier to understand and control model outputs.
|
| 65 |
- Adaptive Behavior: LLMs, post instruction-based fine-tuning, exhibit adaptive behavior that is responsive to both explicit task descriptions and implicit cues within the provided text.
|
| 66 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
## Dataset generation
|
| 68 |
|
| 69 |
This JSON file is a list of dictionaries, each dictionary contains the following fields:
|
|
|
|
| 1 |
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
language:
|
| 4 |
- fr
|
|
|
|
| 5 |
multilinguality:
|
| 6 |
- monolingual
|
| 7 |
+
tags:
|
| 8 |
+
- finetuning
|
| 9 |
+
- legal
|
| 10 |
+
- french law
|
| 11 |
+
- droit français
|
| 12 |
+
- Code du sport
|
| 13 |
source_datasets:
|
| 14 |
- original
|
| 15 |
+
pretty_name: Code du sport
|
| 16 |
task_categories:
|
| 17 |
- text-generation
|
| 18 |
- table-question-answering
|
|
|
|
| 20 |
- text-retrieval
|
| 21 |
- question-answering
|
| 22 |
- text-classification
|
| 23 |
+
size_categories:
|
| 24 |
+
- 1K<n<10K
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
---
|
| 26 |
+
# Code du sport, non-instruct (2024-04-01)
|
| 27 |
|
| 28 |
This project focuses on fine-tuning pre-trained language models to create efficient and accurate models for legal practice.
|
| 29 |
|
|
|
|
| 39 |
- Interpretability: Instruction-based fine-tuning also makes LLM behavior more interpretable. Since the instructions are human-readable, it becomes easier to understand and control model outputs.
|
| 40 |
- Adaptive Behavior: LLMs, post instruction-based fine-tuning, exhibit adaptive behavior that is responsive to both explicit task descriptions and implicit cues within the provided text.
|
| 41 |
|
| 42 |
+
## Concurrent reading of the LegalKit
|
| 43 |
+
|
| 44 |
+
To use all the legal data published on LegalKit, you can use this code snippet:
|
| 45 |
+
```python
|
| 46 |
+
# -*- coding: utf-8 -*-
|
| 47 |
+
import concurrent.futures
|
| 48 |
+
import os
|
| 49 |
+
|
| 50 |
+
import datasets
|
| 51 |
+
from tqdm.notebook import tqdm
|
| 52 |
+
|
| 53 |
+
def dataset_loader(
|
| 54 |
+
name:str,
|
| 55 |
+
streaming:bool=True
|
| 56 |
+
) -> datasets.Dataset:
|
| 57 |
+
"""
|
| 58 |
+
Helper function to load a single dataset in parallel.
|
| 59 |
+
|
| 60 |
+
Parameters
|
| 61 |
+
----------
|
| 62 |
+
name : str
|
| 63 |
+
Name of the dataset to be loaded.
|
| 64 |
+
|
| 65 |
+
streaming : bool, optional
|
| 66 |
+
Determines if datasets are streamed. Default is True.
|
| 67 |
+
|
| 68 |
+
Returns
|
| 69 |
+
-------
|
| 70 |
+
dataset : datasets.Dataset
|
| 71 |
+
Loaded dataset object.
|
| 72 |
+
|
| 73 |
+
Raises
|
| 74 |
+
------
|
| 75 |
+
Exception
|
| 76 |
+
If an error occurs during dataset loading.
|
| 77 |
+
"""
|
| 78 |
+
try:
|
| 79 |
+
return datasets.load_dataset(
|
| 80 |
+
name,
|
| 81 |
+
split="train",
|
| 82 |
+
streaming=streaming
|
| 83 |
+
)
|
| 84 |
+
|
| 85 |
+
except Exception as exc:
|
| 86 |
+
logging.error(f"Error loading dataset {name}: {exc}")
|
| 87 |
+
|
| 88 |
+
return None
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
def load_datasets(
|
| 92 |
+
req:list,
|
| 93 |
+
streaming:bool=True
|
| 94 |
+
) -> list:
|
| 95 |
+
"""
|
| 96 |
+
Downloads datasets specified in a list and creates a list of loaded datasets.
|
| 97 |
+
|
| 98 |
+
Parameters
|
| 99 |
+
----------
|
| 100 |
+
req : list
|
| 101 |
+
A list containing the names of datasets to be downloaded.
|
| 102 |
+
|
| 103 |
+
streaming : bool, optional
|
| 104 |
+
Determines if datasets are streamed. Default is True.
|
| 105 |
+
|
| 106 |
+
Returns
|
| 107 |
+
-------
|
| 108 |
+
datasets_list : list
|
| 109 |
+
A list containing loaded datasets as per the requested names provided in 'req'.
|
| 110 |
+
|
| 111 |
+
Raises
|
| 112 |
+
------
|
| 113 |
+
Exception
|
| 114 |
+
If an error occurs during dataset loading or processing.
|
| 115 |
+
|
| 116 |
+
Examples
|
| 117 |
+
--------
|
| 118 |
+
>>> datasets = load_datasets(["dataset1", "dataset2"], streaming=False)
|
| 119 |
+
"""
|
| 120 |
+
datasets_list = []
|
| 121 |
+
|
| 122 |
+
with concurrent.futures.ThreadPoolExecutor() as executor:
|
| 123 |
+
future_to_dataset = {executor.submit(dataset_loader, name): name for name in req}
|
| 124 |
+
|
| 125 |
+
for future in tqdm(concurrent.futures.as_completed(future_to_dataset), total=len(req)):
|
| 126 |
+
name = future_to_dataset[future]
|
| 127 |
+
|
| 128 |
+
try:
|
| 129 |
+
dataset = future.result()
|
| 130 |
+
|
| 131 |
+
if dataset:
|
| 132 |
+
datasets_list.append(dataset)
|
| 133 |
+
|
| 134 |
+
except Exception as exc:
|
| 135 |
+
logging.error(f"Error processing dataset {name}: {exc}")
|
| 136 |
+
|
| 137 |
+
return datasets_list
|
| 138 |
+
|
| 139 |
+
|
| 140 |
+
req = [
|
| 141 |
+
"louisbrulenaudet/code-artisanat",
|
| 142 |
+
"louisbrulenaudet/code-action-sociale-familles",
|
| 143 |
+
# ...
|
| 144 |
+
]
|
| 145 |
+
|
| 146 |
+
datasets_list = load_datasets(
|
| 147 |
+
req=req,
|
| 148 |
+
streaming=True
|
| 149 |
+
)
|
| 150 |
+
|
| 151 |
+
dataset = datasets.concatenate_datasets(
|
| 152 |
+
datasets_list
|
| 153 |
+
)
|
| 154 |
+
```
|
| 155 |
+
|
| 156 |
## Dataset generation
|
| 157 |
|
| 158 |
This JSON file is a list of dictionaries, each dictionary contains the following fields:
|