# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. import os import pandas as pd import random from typing import Dict, List, Tuple, Any, Optional class MultiGridQuestionGenerator: def __init__(self, spatial_dicts: List[Dict]): """ Initialize with a list of spatial dictionaries, each representing one grid Args: spatial_dicts: List of dictionaries, where each dictionary maps (row, col) to (shape, color) for one grid """ self.spatial_dicts = spatial_dicts self.num_grids = len(spatial_dicts) self.grid_dimensions = [self._get_grid_dimensions(d) for d in spatial_dicts] self.shapes = ['triangle', 'square', 'circle'] self.colors = ['black', 'white'] def _get_grid_dimensions(self, spatial_dict: Dict) -> Tuple[int, int]: """Calculate dimensions for a single grid""" max_row = max(pos[0] for pos in spatial_dict.keys()) max_col = max(pos[1] for pos in spatial_dict.keys()) return (max_row + 1, max_col + 1) def _get_object_at_position(self, grid_idx: int, row: int, col: int) -> Tuple[str, str]: """Get object at position in specified grid""" return self.spatial_dicts[grid_idx].get((row, col), (None, None)) def _count_objects_same_row(self, grid_idx: int, row: int, col: int, direction: str, color: Optional[str] = None, shape: Optional[str] = None) -> int: """Count objects in same row in specified direction for given grid""" rows, cols = self.grid_dimensions[grid_idx] if not (0 <= row < rows and 0 <= col < cols): return -1 if direction == 'right' and col >= cols - 1: return -1 if direction == 'left' and col <= 0: return -1 count = 0 if direction == 'right': range_to_check = range(col + 1, cols) else: # left range_to_check = range(col - 1, -1, -1) for c in range_to_check: curr_shape, curr_color = self._get_object_at_position(grid_idx, row, c) matches = True if color and curr_color != color: matches = False if shape and curr_shape != shape: matches = False if matches: count += 1 return count def _count_objects_same_column(self, grid_idx: int, row: int, col: int, direction: str, color: Optional[str] = None, shape: Optional[str] = None) -> int: """Count objects in same column in specified direction for given grid""" rows, cols = self.grid_dimensions[grid_idx] if not (0 <= row < rows and 0 <= col < cols): return -1 if direction == 'up' and row <= 0: return -1 if direction == 'down' and row >= rows - 1: return -1 count = 0 if direction == 'up': range_to_check = range(row - 1, -1, -1) else: # down range_to_check = range(row + 1, rows) for r in range_to_check: curr_shape, curr_color = self._get_object_at_position(grid_idx, r, col) matches = True if color and curr_color != color: matches = False if shape and curr_shape != shape: matches = False if matches: count += 1 return count def _gen_directional_count_question(self) -> Optional[Dict[str, Any]]: """Generate a question about counting objects in a specific direction""" # Choose a random grid grid_idx = random.randint(0, self.num_grids - 1) rows, cols = self.grid_dimensions[grid_idx] # Choose direction and appropriate position constraints direction = random.choice(['left', 'right', 'up', 'down']) if direction == 'right': row = random.randint(0, rows - 1) col = random.randint(0, cols - 2) # Avoid rightmost elif direction == 'left': row = random.randint(0, rows - 1) col = random.randint(1, cols - 1) # Avoid leftmost elif direction == 'up': row = random.randint(1, rows - 1) # Avoid topmost col = random.randint(0, cols - 1) else: # down row = random.randint(0, rows - 2) # Avoid bottommost col = random.randint(0, cols - 1) base_shape, base_color = self._get_object_at_position(grid_idx, row, col) # Randomly choose what to count count_type = random.choice(['color', 'shape', 'both']) target_color = random.choice(self.colors) if count_type in ['color', 'both'] else None target_shape = random.choice(self.shapes) if count_type in ['shape', 'both'] else None # Generate count based on direction if direction in ['left', 'right']: count = self._count_objects_same_row(grid_idx, row, col, direction, target_color, target_shape) else: count = self._count_objects_same_column(grid_idx, row, col, direction, target_color, target_shape) # Construct question text what_to_count = "" if count_type == 'color': what_to_count = f"{target_color} objects" elif count_type == 'shape': what_to_count = f"{target_shape}s" else: what_to_count = f"{target_color} {target_shape}s" question = ( f"In grid {grid_idx + 1}, starting from the {base_color} {base_shape} at position " f"(row {row + 1}, column {col + 1}), how many {what_to_count} are there {direction} " f"of it in the same {'row' if direction in ['left', 'right'] else 'column'}?" ) return { "question": question, "answer": count, "type": f"count_{direction}", "grid_idx": grid_idx } def generate_question_set(self, num_questions: int = 5) -> List[Dict[str, Any]]: """Generate a set of unique questions across all grids""" questions = [] attempts = 0 max_attempts = num_questions * 3 question_generators = [ self._gen_directional_count_question, # Add other question generators here ] while len(questions) < num_questions and attempts < max_attempts: gen_func = random.choice(question_generators) question = gen_func() if question and not any(self._are_similar_questions(question, q) for q in questions): questions.append(question) attempts += 1 return questions def _are_similar_questions(self, q1: Dict[str, Any], q2: Dict[str, Any]) -> bool: """Check if two questions are too similar""" if q1['type'] != q2['type'] or q1['grid_idx'] != q2['grid_idx']: return False return q1['question'] == q2['question'] def process_dataset(df: pd.DataFrame) -> pd.DataFrame: """ Process the dataset to generate questions for each set of grids Args: df: DataFrame with 'name' and 'spatial_dict' columns Returns: DataFrame with filename, question, answer columns """ dataset = [] for idx, row in df.iterrows(): print(f"Processing {row['name']}") generator = MultiGridQuestionGenerator(row['spatial_dict']) questions = generator.generate_question_set(num_questions=random.randint(1, 5)) for q in questions: q['filename'] = row['name'] q['sweep'] = row['sweep'] dataset.extend(questions) print("=====================================") return pd.DataFrame(dataset)[['filename', 'question', 'answer', 'sweep']] import ast df = pd.read_csv("visual_discrimination/sweep/visual_spatial/dataset_dump.csv") df['spatial_dict'] = df.apply(lambda x: ast.literal_eval(x['spatial_dict']), axis=1) df["sweep"] = df.apply(lambda x: ast.literal_eval(x["sweep"]), axis=1) dataset = process_dataset(df) dataset.to_csv("visual_discrimination/sweep/visual_spatial/dataset_info.csv", index=False)