Update README.md
Browse files
README.md
CHANGED
|
@@ -1,292 +1,291 @@
|
|
| 1 |
-
---
|
| 2 |
-
dataset_info:
|
| 3 |
-
- config_name: cited_count_en
|
| 4 |
-
features:
|
| 5 |
-
- name: paper_id
|
| 6 |
-
dtype: int64
|
| 7 |
-
- name: text
|
| 8 |
-
dtype: string
|
| 9 |
-
- name: value
|
| 10 |
-
dtype: int64
|
| 11 |
-
splits:
|
| 12 |
-
- name: train
|
| 13 |
-
num_bytes: 153923446
|
| 14 |
-
num_examples: 164037
|
| 15 |
-
- name: test
|
| 16 |
-
num_bytes: 17299606
|
| 17 |
-
num_examples: 18227
|
| 18 |
-
download_size: 96766516
|
| 19 |
-
dataset_size: 171223052
|
| 20 |
-
- config_name: cited_count_ru
|
| 21 |
-
features:
|
| 22 |
-
- name: paper_id
|
| 23 |
-
dtype: int64
|
| 24 |
-
- name: text
|
| 25 |
-
dtype: string
|
| 26 |
-
- name: value
|
| 27 |
-
dtype: int64
|
| 28 |
-
splits:
|
| 29 |
-
- name: train
|
| 30 |
-
num_bytes: 270027978
|
| 31 |
-
num_examples: 164037
|
| 32 |
-
- name: test
|
| 33 |
-
num_bytes: 30221754
|
| 34 |
-
num_examples: 18227
|
| 35 |
-
download_size: 142100419
|
| 36 |
-
dataset_size: 300249732
|
| 37 |
-
- config_name: corerisc_en
|
| 38 |
-
features:
|
| 39 |
-
- name: paper_id
|
| 40 |
-
dtype: int64
|
| 41 |
-
- name: text
|
| 42 |
-
dtype: string
|
| 43 |
-
- name: label
|
| 44 |
-
dtype: int64
|
| 45 |
-
splits:
|
| 46 |
-
- name: train
|
| 47 |
-
num_bytes: 73341997
|
| 48 |
-
num_examples: 71179
|
| 49 |
-
- name: test
|
| 50 |
-
num_bytes: 8166576
|
| 51 |
-
num_examples: 7909
|
| 52 |
-
download_size: 46316647
|
| 53 |
-
dataset_size: 81508573
|
| 54 |
-
- config_name: corerisc_ru
|
| 55 |
-
features:
|
| 56 |
-
- name: paper_id
|
| 57 |
-
dtype: int64
|
| 58 |
-
- name: text
|
| 59 |
-
dtype: string
|
| 60 |
-
- name: label
|
| 61 |
-
dtype: int64
|
| 62 |
-
splits:
|
| 63 |
-
- name: train
|
| 64 |
-
num_bytes: 126882101
|
| 65 |
-
num_examples: 71179
|
| 66 |
-
- name: test
|
| 67 |
-
num_bytes: 14138146
|
| 68 |
-
num_examples: 7909
|
| 69 |
-
download_size: 66804789
|
| 70 |
-
dataset_size: 141020247
|
| 71 |
-
- config_name: grnti_en
|
| 72 |
-
features:
|
| 73 |
-
- name: paper_id
|
| 74 |
-
dtype: int64
|
| 75 |
-
- name: text
|
| 76 |
-
dtype: string
|
| 77 |
-
- name: label
|
| 78 |
-
dtype: string
|
| 79 |
-
splits:
|
| 80 |
-
- name: train
|
| 81 |
-
num_bytes: 23162752
|
| 82 |
-
num_examples: 24338
|
| 83 |
-
- name: test
|
| 84 |
-
num_bytes: 2370958
|
| 85 |
-
num_examples: 2517
|
| 86 |
-
download_size: 14573785
|
| 87 |
-
dataset_size: 25533710
|
| 88 |
-
- config_name: grnti_ru
|
| 89 |
-
features:
|
| 90 |
-
- name: paper_id
|
| 91 |
-
dtype: int64
|
| 92 |
-
- name: text
|
| 93 |
-
dtype: string
|
| 94 |
-
- name: label
|
| 95 |
-
dtype: string
|
| 96 |
-
splits:
|
| 97 |
-
- name: train
|
| 98 |
-
num_bytes: 45889708
|
| 99 |
-
num_examples: 28399
|
| 100 |
-
- name: test
|
| 101 |
-
num_bytes: 4505718
|
| 102 |
-
num_examples: 2764
|
| 103 |
-
download_size: 23982191
|
| 104 |
-
dataset_size: 50395426
|
| 105 |
-
- config_name: oecd_en
|
| 106 |
-
features:
|
| 107 |
-
- name: paper_id
|
| 108 |
-
dtype: int64
|
| 109 |
-
- name: text
|
| 110 |
-
dtype: string
|
| 111 |
-
- name: label
|
| 112 |
-
dtype: string
|
| 113 |
-
splits:
|
| 114 |
-
- name: train
|
| 115 |
-
num_bytes: 23554397
|
| 116 |
-
num_examples: 25524
|
| 117 |
-
- name: test
|
| 118 |
-
num_bytes: 2731300
|
| 119 |
-
num_examples: 2982
|
| 120 |
-
download_size: 15027636
|
| 121 |
-
dataset_size: 26285697
|
| 122 |
-
- config_name: oecd_ru
|
| 123 |
-
features:
|
| 124 |
-
- name: paper_id
|
| 125 |
-
dtype: int64
|
| 126 |
-
- name: text
|
| 127 |
-
dtype: string
|
| 128 |
-
- name: label
|
| 129 |
-
dtype: string
|
| 130 |
-
splits:
|
| 131 |
-
- name: train
|
| 132 |
-
num_bytes: 43096907
|
| 133 |
-
num_examples: 27680
|
| 134 |
-
- name: test
|
| 135 |
-
num_bytes: 4970053
|
| 136 |
-
num_examples: 3197
|
| 137 |
-
download_size: 23005782
|
| 138 |
-
dataset_size: 48066960
|
| 139 |
-
- config_name: pub_type_en
|
| 140 |
-
features:
|
| 141 |
-
- name: paper_id
|
| 142 |
-
dtype: int64
|
| 143 |
-
- name: text
|
| 144 |
-
dtype: string
|
| 145 |
-
- name: label
|
| 146 |
-
dtype: string
|
| 147 |
-
splits:
|
| 148 |
-
- name: train
|
| 149 |
-
num_bytes: 3313212
|
| 150 |
-
num_examples: 4150
|
| 151 |
-
- name: test
|
| 152 |
-
num_bytes: 365129
|
| 153 |
-
num_examples: 462
|
| 154 |
-
download_size: 2117609
|
| 155 |
-
dataset_size: 3678341
|
| 156 |
-
- config_name: pub_type_ru
|
| 157 |
-
features:
|
| 158 |
-
- name: paper_id
|
| 159 |
-
dtype: int64
|
| 160 |
-
- name: text
|
| 161 |
-
dtype: string
|
| 162 |
-
- name: label
|
| 163 |
-
dtype: string
|
| 164 |
-
splits:
|
| 165 |
-
- name: train
|
| 166 |
-
num_bytes: 5840922
|
| 167 |
-
num_examples: 4150
|
| 168 |
-
- name: test
|
| 169 |
-
num_bytes: 659760
|
| 170 |
-
num_examples: 462
|
| 171 |
-
download_size: 3117503
|
| 172 |
-
dataset_size: 6500682
|
| 173 |
-
- config_name: yearpubl_en
|
| 174 |
-
features:
|
| 175 |
-
- name: paper_id
|
| 176 |
-
dtype: int64
|
| 177 |
-
- name: text
|
| 178 |
-
dtype: string
|
| 179 |
-
- name: value
|
| 180 |
-
dtype: int64
|
| 181 |
-
splits:
|
| 182 |
-
- name: train
|
| 183 |
-
num_bytes: 154116011
|
| 184 |
-
num_examples: 164037
|
| 185 |
-
- name: test
|
| 186 |
-
num_bytes: 17107041
|
| 187 |
-
num_examples: 18227
|
| 188 |
-
download_size: 96733496
|
| 189 |
-
dataset_size: 171223052
|
| 190 |
-
- config_name: yearpubl_ru
|
| 191 |
-
features:
|
| 192 |
-
- name: paper_id
|
| 193 |
-
dtype: int64
|
| 194 |
-
- name: text
|
| 195 |
-
dtype: string
|
| 196 |
-
- name: value
|
| 197 |
-
dtype: int64
|
| 198 |
-
splits:
|
| 199 |
-
- name: train
|
| 200 |
-
num_bytes: 270193175
|
| 201 |
-
num_examples: 164037
|
| 202 |
-
- name: test
|
| 203 |
-
num_bytes: 30056557
|
| 204 |
-
num_examples: 18227
|
| 205 |
-
download_size: 141958702
|
| 206 |
-
dataset_size: 300249732
|
| 207 |
-
configs:
|
| 208 |
-
- config_name: cited_count_en
|
| 209 |
-
data_files:
|
| 210 |
-
- split: train
|
| 211 |
-
path: cited_count_en/train-*
|
| 212 |
-
- split: test
|
| 213 |
-
path: cited_count_en/test-*
|
| 214 |
-
- config_name: cited_count_ru
|
| 215 |
-
data_files:
|
| 216 |
-
- split: train
|
| 217 |
-
path: cited_count_ru/train-*
|
| 218 |
-
- split: test
|
| 219 |
-
path: cited_count_ru/test-*
|
| 220 |
-
- config_name: corerisc_en
|
| 221 |
-
data_files:
|
| 222 |
-
- split: train
|
| 223 |
-
path: corerisc_en/train-*
|
| 224 |
-
- split: test
|
| 225 |
-
path: corerisc_en/test-*
|
| 226 |
-
- config_name: corerisc_ru
|
| 227 |
-
data_files:
|
| 228 |
-
- split: train
|
| 229 |
-
path: corerisc_ru/train-*
|
| 230 |
-
- split: test
|
| 231 |
-
path: corerisc_ru/test-*
|
| 232 |
-
- config_name: grnti_en
|
| 233 |
-
data_files:
|
| 234 |
-
- split: train
|
| 235 |
-
path: grnti_en/train-*
|
| 236 |
-
- split: test
|
| 237 |
-
path: grnti_en/test-*
|
| 238 |
-
- config_name: grnti_ru
|
| 239 |
-
data_files:
|
| 240 |
-
- split: train
|
| 241 |
-
path: grnti_ru/train-*
|
| 242 |
-
- split: test
|
| 243 |
-
path: grnti_ru/test-*
|
| 244 |
-
- config_name: oecd_en
|
| 245 |
-
data_files:
|
| 246 |
-
- split: train
|
| 247 |
-
path: oecd_en/train-*
|
| 248 |
-
- split: test
|
| 249 |
-
path: oecd_en/test-*
|
| 250 |
-
- config_name: oecd_ru
|
| 251 |
-
data_files:
|
| 252 |
-
- split: train
|
| 253 |
-
path: oecd_ru/train-*
|
| 254 |
-
- split: test
|
| 255 |
-
path: oecd_ru/test-*
|
| 256 |
-
- config_name: pub_type_en
|
| 257 |
-
data_files:
|
| 258 |
-
- split: train
|
| 259 |
-
path: pub_type_en/train-*
|
| 260 |
-
- split: test
|
| 261 |
-
path: pub_type_en/test-*
|
| 262 |
-
- config_name: pub_type_ru
|
| 263 |
-
data_files:
|
| 264 |
-
- split: train
|
| 265 |
-
path: pub_type_ru/train-*
|
| 266 |
-
- split: test
|
| 267 |
-
path: pub_type_ru/test-*
|
| 268 |
-
- config_name: yearpubl_en
|
| 269 |
-
data_files:
|
| 270 |
-
- split: train
|
| 271 |
-
path: yearpubl_en/train-*
|
| 272 |
-
- split: test
|
| 273 |
-
path: yearpubl_en/test-*
|
| 274 |
-
- config_name: yearpubl_ru
|
| 275 |
-
data_files:
|
| 276 |
-
- split: train
|
| 277 |
-
path: yearpubl_ru/train-*
|
| 278 |
-
- split: test
|
| 279 |
-
path: yearpubl_ru/test-*
|
| 280 |
-
language:
|
| 281 |
-
- ru
|
| 282 |
-
- en
|
| 283 |
-
tags:
|
| 284 |
-
- benchmark
|
| 285 |
-
- mteb
|
| 286 |
-
- text classification
|
| 287 |
-
- text regression
|
| 288 |
-
---
|
| 289 |
-
|
| 290 |
# RuSciBench Dataset Collection
|
| 291 |
|
| 292 |
This repository contains the datasets for the **RuSciBench** benchmark, designed for evaluating semantic vector representations of scientific texts in Russian and English.
|
|
@@ -304,26 +303,38 @@ The benchmark includes a variety of tasks grouped into Classification, Regressio
|
|
| 304 |
### Classification Tasks
|
| 305 |
|
| 306 |
1. **Topic Classification (OECD):** Classify papers based on the first two levels of the Organization for Economic Co-operation and Development (OECD) rubricator (29 classes).
|
| 307 |
-
* `RuSciBenchOecdRuClassification` (`oecd_ru`)
|
| 308 |
-
* `RuSciBenchOecdEnClassification` (`oecd_en`)
|
| 309 |
2. **Topic Classification (GRNTI/SRSTI):** Classify papers based on the first level of the State Rubricator of Scientific and Technical Information (GRNTI/SRSTI) (29 classes).
|
| 310 |
-
* `RuSciBenchGrntiRuClassification` (`grnti_ru`)
|
| 311 |
-
* `RuSciBenchGrntiEnClassification` (`grnti_en`)
|
| 312 |
3. **Core RISC Affiliation:** Binary classification task to determine if a paper belongs to the Core of the Russian Index of Science Citation (RISC).
|
| 313 |
-
* `RuSciBenchCoreRiscRuClassification` (`corerisc_ru`)
|
| 314 |
-
* `RuSciBenchCoreRiscEnClassification` (`corerisc_en`)
|
| 315 |
4. **Publication Type Classification:** Classify documents into types like 'article', 'conference proceedings', 'survey', etc. (7 classes, balanced subset used).
|
| 316 |
-
* `RuSciBenchPubTypesRuClassification` (`pub_type_ru`)
|
| 317 |
-
* `RuSciBenchPubTypesEnClassification` (`pub_type_en`)
|
| 318 |
|
| 319 |
### Regression Tasks
|
| 320 |
|
| 321 |
1. **Year of Publication Prediction:** Predict the publication year of the paper.
|
| 322 |
-
* `RuSciBenchYearPublRuRegression` (`yearpubl_ru`)
|
| 323 |
-
* `RuSciBenchYearPublEnRegression` (`yearpubl_en`)
|
| 324 |
2. **Citation Count Prediction:** Predict the number of times a paper has been cited.
|
| 325 |
-
* `RuSciBenchCitedCountRuRegression` (`cited_count_ru`)
|
| 326 |
-
* `RuSciBenchCitedCountEnRegression` (`cited_count_en`)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 327 |
|
| 328 |
## Usage
|
| 329 |
|
|
|
|
| 1 |
+
---
|
| 2 |
+
dataset_info:
|
| 3 |
+
- config_name: cited_count_en
|
| 4 |
+
features:
|
| 5 |
+
- name: paper_id
|
| 6 |
+
dtype: int64
|
| 7 |
+
- name: text
|
| 8 |
+
dtype: string
|
| 9 |
+
- name: value
|
| 10 |
+
dtype: int64
|
| 11 |
+
splits:
|
| 12 |
+
- name: train
|
| 13 |
+
num_bytes: 153923446
|
| 14 |
+
num_examples: 164037
|
| 15 |
+
- name: test
|
| 16 |
+
num_bytes: 17299606
|
| 17 |
+
num_examples: 18227
|
| 18 |
+
download_size: 96766516
|
| 19 |
+
dataset_size: 171223052
|
| 20 |
+
- config_name: cited_count_ru
|
| 21 |
+
features:
|
| 22 |
+
- name: paper_id
|
| 23 |
+
dtype: int64
|
| 24 |
+
- name: text
|
| 25 |
+
dtype: string
|
| 26 |
+
- name: value
|
| 27 |
+
dtype: int64
|
| 28 |
+
splits:
|
| 29 |
+
- name: train
|
| 30 |
+
num_bytes: 270027978
|
| 31 |
+
num_examples: 164037
|
| 32 |
+
- name: test
|
| 33 |
+
num_bytes: 30221754
|
| 34 |
+
num_examples: 18227
|
| 35 |
+
download_size: 142100419
|
| 36 |
+
dataset_size: 300249732
|
| 37 |
+
- config_name: corerisc_en
|
| 38 |
+
features:
|
| 39 |
+
- name: paper_id
|
| 40 |
+
dtype: int64
|
| 41 |
+
- name: text
|
| 42 |
+
dtype: string
|
| 43 |
+
- name: label
|
| 44 |
+
dtype: int64
|
| 45 |
+
splits:
|
| 46 |
+
- name: train
|
| 47 |
+
num_bytes: 73341997
|
| 48 |
+
num_examples: 71179
|
| 49 |
+
- name: test
|
| 50 |
+
num_bytes: 8166576
|
| 51 |
+
num_examples: 7909
|
| 52 |
+
download_size: 46316647
|
| 53 |
+
dataset_size: 81508573
|
| 54 |
+
- config_name: corerisc_ru
|
| 55 |
+
features:
|
| 56 |
+
- name: paper_id
|
| 57 |
+
dtype: int64
|
| 58 |
+
- name: text
|
| 59 |
+
dtype: string
|
| 60 |
+
- name: label
|
| 61 |
+
dtype: int64
|
| 62 |
+
splits:
|
| 63 |
+
- name: train
|
| 64 |
+
num_bytes: 126882101
|
| 65 |
+
num_examples: 71179
|
| 66 |
+
- name: test
|
| 67 |
+
num_bytes: 14138146
|
| 68 |
+
num_examples: 7909
|
| 69 |
+
download_size: 66804789
|
| 70 |
+
dataset_size: 141020247
|
| 71 |
+
- config_name: grnti_en
|
| 72 |
+
features:
|
| 73 |
+
- name: paper_id
|
| 74 |
+
dtype: int64
|
| 75 |
+
- name: text
|
| 76 |
+
dtype: string
|
| 77 |
+
- name: label
|
| 78 |
+
dtype: string
|
| 79 |
+
splits:
|
| 80 |
+
- name: train
|
| 81 |
+
num_bytes: 23162752
|
| 82 |
+
num_examples: 24338
|
| 83 |
+
- name: test
|
| 84 |
+
num_bytes: 2370958
|
| 85 |
+
num_examples: 2517
|
| 86 |
+
download_size: 14573785
|
| 87 |
+
dataset_size: 25533710
|
| 88 |
+
- config_name: grnti_ru
|
| 89 |
+
features:
|
| 90 |
+
- name: paper_id
|
| 91 |
+
dtype: int64
|
| 92 |
+
- name: text
|
| 93 |
+
dtype: string
|
| 94 |
+
- name: label
|
| 95 |
+
dtype: string
|
| 96 |
+
splits:
|
| 97 |
+
- name: train
|
| 98 |
+
num_bytes: 45889708
|
| 99 |
+
num_examples: 28399
|
| 100 |
+
- name: test
|
| 101 |
+
num_bytes: 4505718
|
| 102 |
+
num_examples: 2764
|
| 103 |
+
download_size: 23982191
|
| 104 |
+
dataset_size: 50395426
|
| 105 |
+
- config_name: oecd_en
|
| 106 |
+
features:
|
| 107 |
+
- name: paper_id
|
| 108 |
+
dtype: int64
|
| 109 |
+
- name: text
|
| 110 |
+
dtype: string
|
| 111 |
+
- name: label
|
| 112 |
+
dtype: string
|
| 113 |
+
splits:
|
| 114 |
+
- name: train
|
| 115 |
+
num_bytes: 23554397
|
| 116 |
+
num_examples: 25524
|
| 117 |
+
- name: test
|
| 118 |
+
num_bytes: 2731300
|
| 119 |
+
num_examples: 2982
|
| 120 |
+
download_size: 15027636
|
| 121 |
+
dataset_size: 26285697
|
| 122 |
+
- config_name: oecd_ru
|
| 123 |
+
features:
|
| 124 |
+
- name: paper_id
|
| 125 |
+
dtype: int64
|
| 126 |
+
- name: text
|
| 127 |
+
dtype: string
|
| 128 |
+
- name: label
|
| 129 |
+
dtype: string
|
| 130 |
+
splits:
|
| 131 |
+
- name: train
|
| 132 |
+
num_bytes: 43096907
|
| 133 |
+
num_examples: 27680
|
| 134 |
+
- name: test
|
| 135 |
+
num_bytes: 4970053
|
| 136 |
+
num_examples: 3197
|
| 137 |
+
download_size: 23005782
|
| 138 |
+
dataset_size: 48066960
|
| 139 |
+
- config_name: pub_type_en
|
| 140 |
+
features:
|
| 141 |
+
- name: paper_id
|
| 142 |
+
dtype: int64
|
| 143 |
+
- name: text
|
| 144 |
+
dtype: string
|
| 145 |
+
- name: label
|
| 146 |
+
dtype: string
|
| 147 |
+
splits:
|
| 148 |
+
- name: train
|
| 149 |
+
num_bytes: 3313212
|
| 150 |
+
num_examples: 4150
|
| 151 |
+
- name: test
|
| 152 |
+
num_bytes: 365129
|
| 153 |
+
num_examples: 462
|
| 154 |
+
download_size: 2117609
|
| 155 |
+
dataset_size: 3678341
|
| 156 |
+
- config_name: pub_type_ru
|
| 157 |
+
features:
|
| 158 |
+
- name: paper_id
|
| 159 |
+
dtype: int64
|
| 160 |
+
- name: text
|
| 161 |
+
dtype: string
|
| 162 |
+
- name: label
|
| 163 |
+
dtype: string
|
| 164 |
+
splits:
|
| 165 |
+
- name: train
|
| 166 |
+
num_bytes: 5840922
|
| 167 |
+
num_examples: 4150
|
| 168 |
+
- name: test
|
| 169 |
+
num_bytes: 659760
|
| 170 |
+
num_examples: 462
|
| 171 |
+
download_size: 3117503
|
| 172 |
+
dataset_size: 6500682
|
| 173 |
+
- config_name: yearpubl_en
|
| 174 |
+
features:
|
| 175 |
+
- name: paper_id
|
| 176 |
+
dtype: int64
|
| 177 |
+
- name: text
|
| 178 |
+
dtype: string
|
| 179 |
+
- name: value
|
| 180 |
+
dtype: int64
|
| 181 |
+
splits:
|
| 182 |
+
- name: train
|
| 183 |
+
num_bytes: 154116011
|
| 184 |
+
num_examples: 164037
|
| 185 |
+
- name: test
|
| 186 |
+
num_bytes: 17107041
|
| 187 |
+
num_examples: 18227
|
| 188 |
+
download_size: 96733496
|
| 189 |
+
dataset_size: 171223052
|
| 190 |
+
- config_name: yearpubl_ru
|
| 191 |
+
features:
|
| 192 |
+
- name: paper_id
|
| 193 |
+
dtype: int64
|
| 194 |
+
- name: text
|
| 195 |
+
dtype: string
|
| 196 |
+
- name: value
|
| 197 |
+
dtype: int64
|
| 198 |
+
splits:
|
| 199 |
+
- name: train
|
| 200 |
+
num_bytes: 270193175
|
| 201 |
+
num_examples: 164037
|
| 202 |
+
- name: test
|
| 203 |
+
num_bytes: 30056557
|
| 204 |
+
num_examples: 18227
|
| 205 |
+
download_size: 141958702
|
| 206 |
+
dataset_size: 300249732
|
| 207 |
+
configs:
|
| 208 |
+
- config_name: cited_count_en
|
| 209 |
+
data_files:
|
| 210 |
+
- split: train
|
| 211 |
+
path: cited_count_en/train-*
|
| 212 |
+
- split: test
|
| 213 |
+
path: cited_count_en/test-*
|
| 214 |
+
- config_name: cited_count_ru
|
| 215 |
+
data_files:
|
| 216 |
+
- split: train
|
| 217 |
+
path: cited_count_ru/train-*
|
| 218 |
+
- split: test
|
| 219 |
+
path: cited_count_ru/test-*
|
| 220 |
+
- config_name: corerisc_en
|
| 221 |
+
data_files:
|
| 222 |
+
- split: train
|
| 223 |
+
path: corerisc_en/train-*
|
| 224 |
+
- split: test
|
| 225 |
+
path: corerisc_en/test-*
|
| 226 |
+
- config_name: corerisc_ru
|
| 227 |
+
data_files:
|
| 228 |
+
- split: train
|
| 229 |
+
path: corerisc_ru/train-*
|
| 230 |
+
- split: test
|
| 231 |
+
path: corerisc_ru/test-*
|
| 232 |
+
- config_name: grnti_en
|
| 233 |
+
data_files:
|
| 234 |
+
- split: train
|
| 235 |
+
path: grnti_en/train-*
|
| 236 |
+
- split: test
|
| 237 |
+
path: grnti_en/test-*
|
| 238 |
+
- config_name: grnti_ru
|
| 239 |
+
data_files:
|
| 240 |
+
- split: train
|
| 241 |
+
path: grnti_ru/train-*
|
| 242 |
+
- split: test
|
| 243 |
+
path: grnti_ru/test-*
|
| 244 |
+
- config_name: oecd_en
|
| 245 |
+
data_files:
|
| 246 |
+
- split: train
|
| 247 |
+
path: oecd_en/train-*
|
| 248 |
+
- split: test
|
| 249 |
+
path: oecd_en/test-*
|
| 250 |
+
- config_name: oecd_ru
|
| 251 |
+
data_files:
|
| 252 |
+
- split: train
|
| 253 |
+
path: oecd_ru/train-*
|
| 254 |
+
- split: test
|
| 255 |
+
path: oecd_ru/test-*
|
| 256 |
+
- config_name: pub_type_en
|
| 257 |
+
data_files:
|
| 258 |
+
- split: train
|
| 259 |
+
path: pub_type_en/train-*
|
| 260 |
+
- split: test
|
| 261 |
+
path: pub_type_en/test-*
|
| 262 |
+
- config_name: pub_type_ru
|
| 263 |
+
data_files:
|
| 264 |
+
- split: train
|
| 265 |
+
path: pub_type_ru/train-*
|
| 266 |
+
- split: test
|
| 267 |
+
path: pub_type_ru/test-*
|
| 268 |
+
- config_name: yearpubl_en
|
| 269 |
+
data_files:
|
| 270 |
+
- split: train
|
| 271 |
+
path: yearpubl_en/train-*
|
| 272 |
+
- split: test
|
| 273 |
+
path: yearpubl_en/test-*
|
| 274 |
+
- config_name: yearpubl_ru
|
| 275 |
+
data_files:
|
| 276 |
+
- split: train
|
| 277 |
+
path: yearpubl_ru/train-*
|
| 278 |
+
- split: test
|
| 279 |
+
path: yearpubl_ru/test-*
|
| 280 |
+
language:
|
| 281 |
+
- ru
|
| 282 |
+
- en
|
| 283 |
+
tags:
|
| 284 |
+
- benchmark
|
| 285 |
+
- mteb
|
| 286 |
+
- text classification
|
| 287 |
+
- text regression
|
| 288 |
+
---
|
|
|
|
| 289 |
# RuSciBench Dataset Collection
|
| 290 |
|
| 291 |
This repository contains the datasets for the **RuSciBench** benchmark, designed for evaluating semantic vector representations of scientific texts in Russian and English.
|
|
|
|
| 303 |
### Classification Tasks
|
| 304 |
|
| 305 |
1. **Topic Classification (OECD):** Classify papers based on the first two levels of the Organization for Economic Co-operation and Development (OECD) rubricator (29 classes).
|
| 306 |
+
* `RuSciBenchOecdRuClassification` (subset `oecd_ru`)
|
| 307 |
+
* `RuSciBenchOecdEnClassification` (subset `oecd_en`)
|
| 308 |
2. **Topic Classification (GRNTI/SRSTI):** Classify papers based on the first level of the State Rubricator of Scientific and Technical Information (GRNTI/SRSTI) (29 classes).
|
| 309 |
+
* `RuSciBenchGrntiRuClassification` (subset `grnti_ru`)
|
| 310 |
+
* `RuSciBenchGrntiEnClassification` (subset `grnti_en`)
|
| 311 |
3. **Core RISC Affiliation:** Binary classification task to determine if a paper belongs to the Core of the Russian Index of Science Citation (RISC).
|
| 312 |
+
* `RuSciBenchCoreRiscRuClassification` (subset `corerisc_ru`)
|
| 313 |
+
* `RuSciBenchCoreRiscEnClassification` (subset `corerisc_en`)
|
| 314 |
4. **Publication Type Classification:** Classify documents into types like 'article', 'conference proceedings', 'survey', etc. (7 classes, balanced subset used).
|
| 315 |
+
* `RuSciBenchPubTypesRuClassification` (subset `pub_type_ru`)
|
| 316 |
+
* `RuSciBenchPubTypesEnClassification` (subset `pub_type_en`)
|
| 317 |
|
| 318 |
### Regression Tasks
|
| 319 |
|
| 320 |
1. **Year of Publication Prediction:** Predict the publication year of the paper.
|
| 321 |
+
* `RuSciBenchYearPublRuRegression` (subset `yearpubl_ru`)
|
| 322 |
+
* `RuSciBenchYearPublEnRegression` (subset `yearpubl_en`)
|
| 323 |
2. **Citation Count Prediction:** Predict the number of times a paper has been cited.
|
| 324 |
+
* `RuSciBenchCitedCountRuRegression` (subset `cited_count_ru`)
|
| 325 |
+
* `RuSciBenchCitedCountEnRegression` (subset `cited_count_en`)
|
| 326 |
+
|
| 327 |
+
### Retrieval Tasks
|
| 328 |
+
|
| 329 |
+
1. **Direct Citation Prediction:** Given a query paper abstract, retrieve abstracts of papers it directly cites from the corpus. Uses a retrieval setup (all non-positive documents are negative). ([Dataset Link](https://huggingface.co/datasets/mlsa-iai-msu-lab/ru_sci_bench_cite_retrieval))
|
| 330 |
+
* `RuSciBenchCiteRuRetrieval`
|
| 331 |
+
* `RuSciBenchCiteEnRetrieval`
|
| 332 |
+
2. **Co-Citation Prediction:** Given a query paper abstract, retrieve abstracts of papers that are co-cited with it (cited by at least 5 common papers). Uses a retrieval setup. ([Dataset Link](https://huggingface.co/datasets/mlsa-iai-msu-lab/ru_sci_bench_cocite_retrieval))
|
| 333 |
+
* `RuSciBenchCociteRuRetrieval`
|
| 334 |
+
* `RuSciBenchCociteEnRetrieval`
|
| 335 |
+
3. **Translation Search:** Given an abstract in one language (e.g., Russian), retrieve its corresponding translation (e.g., English abstract of the same paper) from the corpus of abstracts in the target language. ([Dataset Link](https://huggingface.co/datasets/mlsa-iai-msu-lab/ru_sci_bench_translation_search))
|
| 336 |
+
* `RuSciBenchTranslationSearchEnRetrieval` (Query: En, Corpus: Ru)
|
| 337 |
+
* `RuSciBenchTranslationSearchRuRetrieval` (Query: Ru, Corpus: En)
|
| 338 |
|
| 339 |
## Usage
|
| 340 |
|