|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
try: |
|
|
|
from transformers import pipeline |
|
from transformers import AutoTokenizer |
|
|
|
model_id = "HuggingFaceTB/SmolLM3-3B" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
|
|
pipe = pipeline("text-generation", model=model_id, tokenizer=tokenizer) |
|
|
|
messages = [ |
|
{"role": "user", "content": "Give me a brief explanation of gravity in simple terms."}, |
|
] |
|
pipe(messages) |
|
|
|
messages = [ |
|
{"role": "system", "content": "/no_think"}, |
|
{"role": "user", "content": "Give me a brief explanation of gravity in simple terms."}, |
|
] |
|
pipe(messages) |
|
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
model_name = "HuggingFaceTB/SmolLM3-3B" |
|
device = "cuda" |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_name, |
|
).to(device) |
|
|
|
|
|
prompt = "Give me a brief explanation of gravity in simple terms." |
|
messages_think = [ |
|
{"role": "user", "content": prompt} |
|
] |
|
|
|
text = tokenizer.apply_chat_template( |
|
messages_think, |
|
tokenize=False, |
|
add_generation_prompt=True, |
|
) |
|
model_inputs = tokenizer([text], return_tensors="pt").to(model.device) |
|
|
|
|
|
generated_ids = model.generate(**model_inputs, max_new_tokens=32768) |
|
|
|
|
|
output_ids = generated_ids[0][len(model_inputs.input_ids[0]) :] |
|
print(tokenizer.decode(output_ids, skip_special_tokens=True)) |
|
|
|
prompt = "Give me a brief explanation of gravity in simple terms." |
|
messages = [ |
|
{"role": "system", "content": "/no_think"}, |
|
{"role": "user", "content": prompt} |
|
] |
|
|
|
text = tokenizer.apply_chat_template( |
|
messages, |
|
tokenize=False, |
|
add_generation_prompt=True, |
|
) |
|
|
|
model_inputs = tokenizer([text], return_tensors="pt").to(model.device) |
|
|
|
|
|
generated_ids = model.generate(**model_inputs, max_new_tokens=32768) |
|
|
|
|
|
output_ids = generated_ids[0][len(model_inputs.input_ids[0]) :] |
|
print(tokenizer.decode(output_ids, skip_special_tokens=True)) |
|
|
|
tools = [ |
|
{ |
|
"name": "get_weather", |
|
"description": "Get the weather in a city", |
|
"parameters": {"type": "object", "properties": {"city": {"type": "string", "description": "The city to get the weather for"}}}} |
|
] |
|
|
|
messages = [ |
|
{ |
|
"role": "user", |
|
"content": "Hello! How is the weather today in Copenhagen?" |
|
} |
|
] |
|
|
|
inputs = tokenizer.apply_chat_template( |
|
messages, |
|
enable_thinking=False, |
|
xml_tools=tools, |
|
add_generation_prompt=True, |
|
tokenize=True, |
|
return_tensors="pt" |
|
).to(model.device) |
|
|
|
outputs = model.generate(inputs) |
|
print(tokenizer.decode(outputs[0])) |
|
with open('HuggingFaceTB_SmolLM3-3B_0.txt', 'w') as f: |
|
f.write('Everything was good in HuggingFaceTB_SmolLM3-3B_0.txt') |
|
except Exception as e: |
|
with open('HuggingFaceTB_SmolLM3-3B_0.txt', 'w') as f: |
|
import traceback |
|
traceback.print_exc(file=f) |
|
finally: |
|
from huggingface_hub import upload_file |
|
upload_file( |
|
path_or_fileobj='HuggingFaceTB_SmolLM3-3B_0.txt', |
|
repo_id='model-metadata/custom_code_execution_files', |
|
path_in_repo='HuggingFaceTB_SmolLM3-3B_0.txt', |
|
repo_type='dataset', |
|
) |